Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Article in English | MEDLINE | ID: mdl-38472727

ABSTRACT

The utilization of 3D printing- digital light processing (DLP) technique, for the direct fabrication of microneedles encounters the problem of drug solubility in printing resin, especially if it is predominantly composed of water. The possible solution how to ensure ideal belonging of drug and water-based printing resin is its pre-formulation in nanosuspension such as nanocrystals. This study investigates the feasibility of this approach on a resin containing nanocrystals of imiquimod (IMQ), an active used in (pre)cancerous skin conditions, well known for its problematic solubility and bioavailability. The resin blend of polyethylene glycol diacrylate and N-vinylpyrrolidone, and lithium phenyl-2,4,6-trimethylbenzoylphosphinate as a photoinitiator, was used, mixed with IMQ nanocrystals in water. The final microneedle-patches had 36 cylindrical microneedles arranged in a square grid, measuring approximately 600 µm in height and 500 µm in diameter. They contained 5wt% IMQ, which is equivalent to a commercially available cream. The homogeneity of IMQ distribution in the matrix was higher for nanocrystals compared to usual crystalline form. The release of IMQ from the patches was determined ex vivo in natural skin and revealed a 48% increase in efficacy for nanocrystal formulations compared to the crystalline form of IMQ.

2.
Int J Pharm ; 648: 123577, 2023 Dec 15.
Article in English | MEDLINE | ID: mdl-37931726

ABSTRACT

Imiquimod (IMQ) is an immunostimulating agent used in the treatment of basal cell carcinoma and actinic keratosis. Due to its low solubility and poor skin bioavailability, the dermal formulation of IMQ remains challenging. In analogy to tyre compounds used in Formula 1 racing, we compare four types of nanosystems belonging to three groups: (i) "hard" nanoparticles in the form of IMQ nanocrystals, (ii) "intermediate" nanoparticles in the form of liposomes and lipid nanocapsules, and (iii) "soft" nanoparticles in the form of a nanoemulsion based on oleic acid. The nanoemulsion and nanocrystals were able to incorporate the highest amount of IMQ (at least 2 wt%) compared to liposomes (0.03 wt%) and lipid nanocapsules (0.08 wt%). Regarding size, liposomes, and lipid nanocapsules were rather small (around 40 nm) whereas nanocrystals and nanoemulsion were larger (around 200 nm). All developed nanoformulations showed high efficiency to deliver IMQ into the skin tissue without undesirable subsequent permeation through the skin to acceptor. Especially, the 2 wt% IMQ nanoemulsion accumulated 129 µg/g IMQ in the skin, compared to 34 µg/g of a 5 wt% commercial cream. The effects of the respective nanoparticulate systems were discussed with respect to their possible diffusion kinetics (Brownian motion vs. settling) in the aqueous phase.


Subject(s)
Liposomes , Nanocapsules , Imiquimod/chemistry , Liposomes/pharmacology , Skin/metabolism , Lipids/pharmacology
3.
Int J Pharm ; 626: 122133, 2022 Oct 15.
Article in English | MEDLINE | ID: mdl-36055446

ABSTRACT

Pharmaceutical nanocrystals represent a promising new formulation that combines the benefits of bulk crystalline materials and colloidal nanoparticles. To be applied in vivo, nanocrystals must meet several criteria, namely colloidal stability in physiological media, non-toxicity to healthy cells, avoidance of macrophage clearance, and bioactivity in the target tissue. In the present work, curcumin, a naturally occurring poorly water-soluble molecule with a broad spectrum of bioactivity has been considered a candidate substance for preparing pharmaceutical nanocrystals. Curcumin nanocrystals in the size range of 40-90 nm were prepared by wet milling using the following combination of steric and ionic stabilizers: Tween 80, sodium dodecyl sulfate, Poloxamer 188, hydroxypropyl methylcellulose, phospholipids (with and without polyethylene glycol), and their combination. Nanocrystals stabilized by a combination of phospholipids enriched with polyethylene glycol proved to be the most successful in all evaluated criteria; they were colloidally stable in all media, exhibited low macrophage clearance, and proved non-toxic to healthy cells. This curcumin nanoformulation also exhibited outstanding anticancer potential comparable to commercially used cytostatics (IC50 = 73 µM; 24 h, HT-29 colorectal carcinoma cell line) which represents an improvement of several orders of magnitude when compared to previously studied curcumin formulations. This work shows that the preparation of phospholipid-stabilized nanocrystals allows for the conversion of poorly soluble compounds into a highly effective "solution-like" drug delivery system at pharmaceutically relevant drug concentrations.


Subject(s)
Curcumin , Nanoparticles , Curcumin/chemistry , Curcumin/pharmacology , Hypromellose Derivatives , Macrophages , Nanoparticles/chemistry , Particle Size , Pharmaceutical Preparations , Phospholipids , Poloxamer/chemistry , Polyethylene Glycols/chemistry , Polysorbates , Sodium Dodecyl Sulfate/chemistry , Solubility , Water
SELECTION OF CITATIONS
SEARCH DETAIL
...