Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Inorg Chem ; 62(8): 3381-3394, 2023 Feb 27.
Article in English | MEDLINE | ID: mdl-36763803

ABSTRACT

In recent decades, transition-metal coordination compounds have been extensively studied for their antitumor and antimetastatic activities. In this work, we synthesized a set of symmetric and asymmetric Ru(III) and Rh(III) coordination compounds of the general structure (Na+/K+/PPh4+/LH+) [trans-MIIIL(eq)nL(ax)2]- (M = RuIII or RhIII; L(eq) = Cl, n = 4; L(eq) = ox, n = 2; L(ax) = 4-R-pyridine, R = CH3, H, C6H5, COOH, CF3, CN; L(ax) = DMSO-S) and systematically investigated their structure, stability, and NMR properties. 1H and 13C NMR spectra measured at various temperatures were used to break down the total NMR shifts into the orbital (temperature-independent) and hyperfine (temperature-dependent) contributions. The hyperfine NMR shifts for paramagnetic Ru(III) compounds were analyzed in detail using relativistic density functional theory (DFT). The effects of (i) the 4-R substituent of pyridine, (ii) the axial trans ligand L(ax), and (iii) the equatorial ligands L(eq) on the distribution of spin density reflected in the "through-bond" (contact) and the "through-space" (pseudocontact) contributions to the hyperfine NMR shifts of the individual atoms of the pyridine ligands are rationalized. Further, we demonstrate the large effects of the solvent on the hyperfine NMR shifts and discuss our observations in the general context of the paramagnetic NMR spectroscopy of transition-metal complexes.

2.
Inorg Chem ; 60(23): 17911-17925, 2021 Dec 06.
Article in English | MEDLINE | ID: mdl-34738800

ABSTRACT

Platinum-based anticancer drugs are actively developed utilizing lipophilic ligands or drug carriers for the efficient penetration of biomembranes, reduction of side effects, and tumor targeting. We report the development of a supramolecular host-guest system built on cationic platinum(II) compounds bearing ligands anchored in the cavity of the macrocyclic host. The host-guest binding and hydrolysis process on the platinum core were investigated in detail by using NMR, MS, X-ray diffraction, and relativistic DFT calculations. The encapsulation process in cucurbit[7]uril unequivocally promotes the stability of hydrolyzed dicationic cis-[PtII(NH3)2(H2O)(NH2-R)]2+ compared to its trans isomer. Biological screening on the ovarian cancer lines A2780 and A2780/CP shows time-dependent toxicity. Notably, the reported complex and its ß-cyclodextrin (ß-CD) assembly achieve the same cellular uptake as cisplatin and cisplatin@ß-CD, respectively, while maintaining a significantly lower toxicity profile.


Subject(s)
Antineoplastic Agents/pharmacology , Density Functional Theory , Macrocyclic Compounds/pharmacology , Organoplatinum Compounds/pharmacology , Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/chemistry , Cell Proliferation/drug effects , Cell Survival/drug effects , Drug Screening Assays, Antitumor , Humans , Macrocyclic Compounds/chemical synthesis , Macrocyclic Compounds/chemistry , Macromolecular Substances/chemical synthesis , Macromolecular Substances/chemistry , Macromolecular Substances/pharmacology , Molecular Structure , Organoplatinum Compounds/chemical synthesis , Organoplatinum Compounds/chemistry , Tumor Cells, Cultured
3.
Inorg Chem ; 59(14): 10185-10196, 2020 Jul 20.
Article in English | MEDLINE | ID: mdl-32633504

ABSTRACT

A wide range of ruthenium-based coordination compounds have been reported to possess potential as metallodrugs with anticancer or antimetastatic activity. In this work, we synthesized a set of new zwitterionic Ru(III) compounds bearing ligands derived from N-alkyl (R) systems based on pyridine, 4,4'-bipyridine, or 1,4-diazabicyclo[2.2.2]octane (DABCO). The effects of the ligand(s) and their environment on the coordination stability have been investigated. Whereas the [DABCO-R]+ ligand is shown to be easily split out of a negative [RuCl4]- core, positively charged R-pyridine and R-bipyridine ligands form somewhat more stable Ru(III) complexes and can be used as supramolecular anchors for binding with macrocycles. Therefore, supramolecular host-guest assemblies between the stable zwitterionic Ru(III) guests and the cucurbit[7]uril host were investigated and characterized in detail by using NMR spectroscopy and single-crystal X-ray diffraction. Paramagnetic 1H NMR experiments supplemented by relativistic DFT calculations of the structure and hyperfine NMR shifts were performed to determine the host-guest binding modes in solution. In contrast to the intramolecular hyperfine shifts, dominated by the through-bond Fermi-contact mechanism, supramolecular hyperfine shifts were shown to depend on the "through-space" spin-dipole contributions with structural trends being satisfactorily reproduced by a simple point-dipole approximation.

4.
Inorg Chem ; 57(15): 8735-8747, 2018 Aug 06.
Article in English | MEDLINE | ID: mdl-29620874

ABSTRACT

The potential of paramagnetic ruthenium(III) compounds for use as anticancer metallodrugs has been investigated extensively during the past several decades. However, the means by which these ruthenium compounds are transported and distributed in living bodies remain relatively unexplored. In this work, we prepared several novel ruthenium(III) compounds with the general structure Na+[ trans-RuIIICl4(DMSO)(L)]- (DMSO = dimethyl sulfoxide), where L stands for pyridine or imidazole linked with adamantane, a hydrophobic chemophore. The supramolecular interactions of these compounds with macrocyclic carriers of the cyclodextrin (CD) and cucurbit[ n]uril (CB) families were investigated by NMR spectroscopy, X-ray diffraction analysis, isothermal titration calorimetry, and relativistic DFT methods. The long-range hyperfine NMR effects of the paramagnetic guest on the host macrocycle are related to the distance between them and their relative orientation in the host-guest complex. The CD and CB macrocyclic carriers being studied in this account can be attached to a vector that attracts the drug-carrier system to a specific biological target and our investigation thus introduces a new possibility in the field of targeted delivery of anticancer metallodrugs based on ruthenium(III) compounds.


Subject(s)
Bridged-Ring Compounds/chemistry , Coordination Complexes/chemistry , Cyclodextrins/chemistry , Drug Carriers/chemistry , Imidazoles/chemistry , Ruthenium/chemistry , Adamantane/analogs & derivatives , Adamantane/chemical synthesis , Adamantane/chemistry , Anisotropy , Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/chemistry , Bridged-Ring Compounds/chemical synthesis , Carbon-13 Magnetic Resonance Spectroscopy , Coordination Complexes/chemical synthesis , Cyclodextrins/chemical synthesis , Drug Carriers/chemical synthesis , Imidazoles/chemical synthesis , Proton Magnetic Resonance Spectroscopy , Pyridines/chemical synthesis , Pyridines/chemistry , Quantum Theory , Spectrometry, Mass, Electrospray Ionization , X-Ray Diffraction
5.
Inorg Chem ; 53(7): 3753-62, 2014 Apr 07.
Article in English | MEDLINE | ID: mdl-24617956

ABSTRACT

New molecular aluminophosphates of different nuclearity are synthesized by a stepwise process and structurally characterized. The alkane elimination reaction of bis(trimethylsiloxy)phosphoric acid, OP(OH)(OSiMe3)2, with trialkylalanes, AlR3 (R = Me, Et, (i)Bu), provides the cyclic dimeric aluminophosphates, [(AlR2{µ2-O2P(OSiMe3)2})2] (R = Me (1), Et (2), (i)Bu (3)). Unsymmetrically substituted cyclic aluminophosphonate [(AlMe2{µ2-O2P(OSiMe3)((c)Hex)})2] (cis/trans-4) is prepared by dealkylsilylation reaction of (c)HexP(O)(OSiMe3)2 with AlMe3. Molecules 1-4 containing the [Al2(µ2-O2P)2] inorganic core are structural and spectroscopic models for the single four-ring (S4R) secondary building units (SBU) of zeolite frameworks. Compound 1 serves as a starting point in construction of larger molecular units by reactions with OP(OH)(OSiMe3)2 as a cage-extending reagent and with diketones, such as Hhfacac (1,1,1,5,5,5-hexafluoropentan-2,4-dione) and Hacac (pentan-2,4-dione), as capping reagents. Reaction of 1 with 4 equiv of Hhfacac leads to new cyclic aluminophosphate [(Al(hfacac)2{µ2-O2P(OSiMe3)2})2] (5), existing in two isomeric (D2 and C2h) forms. Reaction of 1 with 2 equiv of OP(OH)(OSiMe3)2 and 1 equiv of Hhfacac provides a molecular aluminophosphate [AlMe{Al(hfacac)}2{µ3-O3P(OSiMe3)}2{µ2-O2P(OSiMe3)2}2{OP(OSiMe3)3}] (6), while by adding first the Hhfacac and using 3 equiv of OP(OH)(OSiMe3)2 we isolate [Al{Al(hfacac)}2{µ3-O3P(OSiMe3)}2{µ2-O2P(OSiMe3)2}2H{OP(O)(OSiMe3)2}2] (7). These molecules contain units in their cores that imitate 4=1 SBU of zeolite frameworks. Reaction with the order of component mixing 1, Hhfacac, OP(OH)(OSiMe3)2 at a 1:2:2 molar ratio lead to formation of a larger cluster [(Al(AlMe){Al(hfacac)}{µ3-O3P(OSiMe3)}2{µ2-O2P(OSiMe3)2}3)2] (8) containing both S4R and 4=1 structural units. Similarly, Hacac (pentan-2,4-dione) provides an isostructural [(Al(AlMe){Al(acac)}{µ3-O3P(OSiMe3)}2{µ2-O2P(OSiMe3)2}3)2] (9). Both molecules display Al centers in three different coordination environments.

6.
Acta Crystallogr Sect E Struct Rep Online ; 69(Pt 12): o1824, 2013 Nov 27.
Article in English | MEDLINE | ID: mdl-24454249

ABSTRACT

The title compound, C25H24N3O3P, was obtained by catalytic phospho-nation of 4'-(4-bromphen-yl)-2,2':6',2''-terpyridine. The terpyridine moiety is nearly planar, the dihedral angles between the central and the outer rings being 4.06 (9) and 5.39 (9)°. The N atoms in the two pyridine rings are oriented nearly anti-periplanar to that of the central ring. The benzene ring is rotated out of the plane of the central ring of the terpyridine unit by 34.65 (6)°.

SELECTION OF CITATIONS
SEARCH DETAIL
...