Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Biol Conserv ; 256: 108984, 2021 Apr.
Article in English | MEDLINE | ID: mdl-36531528

ABSTRACT

COVID-19 has altered many aspects of everyday life. For the scientific community, the pandemic has called upon investigators to continue work in novel ways, curtailing field and lab research. However, this unprecedented situation also offers an opportunity for researchers to optimize and further develop available field methods. Camera traps are one example of a tool used in science to answer questions about wildlife ecology, conservation, and management. Camera traps have long battery lives, lasting more than a year in certain cases, and photo storage capacity, with some models capable of wirelessly transmitting images from the field. This allows researchers to deploy cameras without having to check them for up to a year or more, making them an ideal field research tool during restrictions on in-person research activities such as COVID-19 lockdowns. As technological advances allow cameras to collect increasingly greater numbers of photos and videos, the analysis techniques for large amounts of data are evolving. Here, we describe the most common research questions suitable for camera trap studies and their importance for biodiversity conservation. As COVID-19 continues to affect how people interact with the natural environment, we discuss novel questions for which camera traps can provide insights on. We conclude by summarizing the results of a systematic review of camera trap studies, providing data on target taxa, geographic distribution, publication rate, and publication venues to help researchers planning to use camera traps in response to the current changes in human activity.

2.
PLoS One ; 10(3): e0119231, 2015.
Article in English | MEDLINE | ID: mdl-25807275

ABSTRACT

Advances in wildlife telemetry and remote sensing technology facilitate studies of broad-scale movements of ungulates in relation to phenological shifts in vegetation. In tropical island dry landscapes, home range use and movements of non-native feral goats (Capra hircus) are largely unknown, yet this information is important to help guide the conservation and restoration of some of the world's most critically endangered ecosystems. We hypothesized that feral goats would respond to resource pulses in vegetation by traveling to areas of recent green-up. To address this hypothesis, we fitted six male and seven female feral goats with Global Positioning System (GPS) collars equipped with an Argos satellite upload link to examine goat movements in relation to the plant phenology using the Normalized Difference Vegetation Index (NDVI). Movement patterns of 50% of males and 40% of females suggested conditional movement between non-overlapping home ranges throughout the year. A shift in NDVI values corresponded with movement between primary and secondary ranges of goats that exhibited long-distance movement, suggesting that vegetation phenology as captured by NDVI is a good indicator of the habitat and movement patterns of feral goats in tropical island dry landscapes. In the context of conservation and restoration of tropical island landscapes, the results of our study identify how non-native feral goats use resources across a broad landscape to sustain their populations and facilitate invasion of native plant communities.


Subject(s)
Animal Distribution , Ecosystem , Goats , Movement , Animals , Female , Hawaii , Islands , Male , Remote Sensing Technology
SELECTION OF CITATIONS
SEARCH DETAIL
...