Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 52
Filter
Add more filters










Publication year range
1.
Macromol Biosci ; 24(3): e2300266, 2024 Mar.
Article in English | MEDLINE | ID: mdl-37821117

ABSTRACT

This study develops and characterizes novel biodegradable soft hydrogels with dual porosity based on N-(2-hydroxypropyl)methacrylamide (HPMA) copolymers cross-linked by hydrolytically degradable linkers. The structure and properties of the hydrogels are designed as scaffolds for tissue engineering and they are tested in vitro with model mesenchymal stem cells (rMSCs). Detailed morphological characterization confirms dual porosity suitable for cell growth and nutrient transport. The dual porosity of hydrogels slightly improves rMSCs proliferation compared to the hydrogel with uniform pores. In addition, the laminin coating supports the adhesion of rMSCs to the hydrogel surface. However, hydrogels modified by heptapeptide RGDSGGY significantly stimulate cell adhesion and growth. Moreover, the RGDS-modified hydrogels also affect the topology of proliferating rMSCs, ranging from single-cell to multicellular clusters. The 3D reconstruction of the hydrogels with cells obtained by laser scanning confocal microscopy (LSCM) confirms cell penetration into the inner structure of the hydrogel and its corresponding microstructure. The prepared biodegradable oligopeptide-modified hydrogels with dual porosity are suitable candidates for further in vivo evaluation in soft tissue regeneration.


Subject(s)
Hydrogels , Mesenchymal Stem Cells , Hydrogels/chemistry , Tissue Engineering , Porosity , Cell Adhesion , Tissue Scaffolds/chemistry
2.
J Med Chem ; 65(5): 3866-3878, 2022 03 10.
Article in English | MEDLINE | ID: mdl-35157467

ABSTRACT

Galectin-3 (Gal-3) participates in many cancer-related metabolic processes. The inhibition of overexpressed Gal-3 by, e.g., ß-galactoside-derived inhibitors is hence promising for cancer treatment. The multivalent presentation of such inhibitors on a suitable biocompatible carrier can enhance the overall affinity to Gal-3 and favorably modify the interaction with Gal-3-overexpressing cells. We synthesized a library of C-3 aryl-substituted thiodigalactoside inhibitors and their multivalent N-(2-hydroxypropyl)methacrylamide (HPMA)-based counterparts with two different glycomimetic contents. Glycopolymers with a higher content of glycomimetic exhibited a higher affinity to Gal-3 as assessed by ELISA and biolayer interferometry. Among them, four candidates (with 4-acetophenyl, 4-cyanophenyl, 4-fluorophenyl, and thiophen-3-yl substitution) were selected for further evaluation in cancer-related experiments in cell cultures. These glycopolymers inhibited Gal-3-induced processes in cancer cells. The cyanophenyl-substituted glycopolymer exhibited the strongest antiproliferative, antimigratory, antiangiogenic, and immunoprotective properties. The prepared glycopolymers appear to be prospective modulators of the tumor microenvironment applicable in the therapy of Gal-3-associated cancers.


Subject(s)
Galectin 3 , Thiogalactosides , Galectin 3/metabolism , Prospective Studies , Thiogalactosides/pharmacology
3.
Int J Mol Sci ; 22(11)2021 Jun 01.
Article in English | MEDLINE | ID: mdl-34206141

ABSTRACT

The interaction of multi-LacNAc (Galß1-4GlcNAc)-containing N-(2-hydroxypropyl) methacrylamide (HPMA) copolymers with human galectin-1 (Gal-1) and the carbohydrate recognition domain (CRD) of human galectin-3 (Gal-3) was analyzed using NMR methods in addition to cryo-electron-microscopy and dynamic light scattering (DLS) experiments. The interaction with individual LacNAc-containing components of the polymer was studied for comparison purposes. For Gal-3 CRD, the NMR data suggest a canonical interaction of the individual small-molecule bi- and trivalent ligands with the lectin binding site and better affinity for the trivalent arrangement due to statistical effects. For the glycopolymers, the interaction was stronger, although no evidence for forming a large supramolecule was obtained. In contrast, for Gal-1, the results indicate the formation of large cross-linked supramolecules in the presence of multivalent LacNAc entities for both the individual building blocks and the polymers. Interestingly, the bivalent and trivalent presentation of LacNAc in the polymer did not produce such an increase, indicating that the multivalency provided by the polymer is sufficient for triggering an efficient binding between the glycopolymer and Gal-1. This hypothesis was further demonstrated by electron microscopy and DLS methods.


Subject(s)
Blood Proteins/chemistry , Galectin 1/chemistry , Galectins/chemistry , Methacrylates/chemistry , Polymers/chemistry , Acrylamides/chemistry , Acrylamides/pharmacology , Binding Sites/drug effects , Blood Proteins/genetics , Carbohydrates/chemistry , Cryoelectron Microscopy , Galectin 1/genetics , Galectins/genetics , Humans , Ligands , Methacrylates/pharmacology , Polymers/pharmacology , Protein Binding/drug effects
4.
Macromol Biosci ; 21(8): e2100135, 2021 08.
Article in English | MEDLINE | ID: mdl-34008348

ABSTRACT

This paper summarizes the area of biomedicinal polymers, which serve as nanomedicines even though they do not contain any anticancer or antiinflammatory drugs. These polymer nanomedicines with unique design are in the literature highlighted as a novel class of therapeutics called "drug-free macromolecular therapeutics." Their therapeutic efficacy is based on the tailored multiple presentations of biologically active vectors, i.e., peptides, oligopeptides, or oligosaccharides. Thus, they enable, for example, to directly induce the apoptosis of malignant cells by the crosslinking of surface slowly internalizing receptors, or to deplete the efficacy of tumor-associated proteins. The precise biorecognition of natural binding motifs by multiple vectors on the polymer construct remains the crucial part in the designing of these drug-free nanomedicines. Here, the rationales, designs, synthetic approaches, and therapeutic potential of drug-free macromolecular therapeutics consisting of various active vectors are described in detail. Recent developments and achievements for namely B-cell lymphoma treatment, Gal-3-positive tumors, inflammative liver injury, and bacterial treatment are reviewed and highlighted. Finally, a possible future prospect within this highly exciting new field of nanomedicine research is presented.


Subject(s)
Antineoplastic Agents , Neoplasms , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/therapeutic use , Anti-Inflammatory Agents/pharmacology , Anti-Inflammatory Agents/therapeutic use , Antineoplastic Agents/pharmacology , Antineoplastic Agents/therapeutic use , Drug Delivery Systems/methods , Humans , Macromolecular Substances/chemistry , Nanomedicine/methods , Neoplasms/drug therapy , Polymers/chemistry
5.
Pharmaceutics ; 13(2)2021 Jan 28.
Article in English | MEDLINE | ID: mdl-33525658

ABSTRACT

The study describes the synthesis, physicochemical properties, and biological evaluation of polymer therapeutics based on N-(2-hydroxypropyl)methacrylamide (HPMA) copolymers intended for a tumor-targeted immuno-oncotherapy. Water-soluble linear and cholesterol-containing HPMA precursors were synthesized using controlled reversible addition-fragmentation chain transfer polymerization to reach molecular weight Mn about 2 × 104 g·mol-1 and low dispersity. These linear or self-assembled micellar conjugates, containing immunomodulatory agent cucurbitacin-D (CuD) or the anticancer drug doxorubicin (Dox) covalently bound by the hydrolytically degradable hydrazone bond, showed a hydrodynamic size of 10-30 nm in aqueous solutions. The CuD-containing conjugates were stable in conditions mimicking blood. Importantly, a massive release of active CuD in buffer mimicking the acidic tumor environment was observed. In vitro, both the linear (LP-CuD) and the micellar (MP-CuD) conjugates carrying CuD showed cytostatic/cytotoxic activity against several cancer cell lines. In a murine metastatic and difficult-to-treat 4T1 mammary carcinoma, only LP-CuD showed an anticancer effect. Indeed, the co-treatment with Dox-containing micellar polymer conjugate and LP-CuD showed potentiation of the anticancer effect. The results indicate that the binding of CuD, characterized by prominent hydrophobic nature and low bioavailability, to the polymer carrier allows a safe and effective delivery. Therefore, the conjugate could serve as a potential component of immuno-oncotherapy schemes within the next preclinical evaluation.

6.
J Pers Med ; 11(2)2021 Feb 10.
Article in English | MEDLINE | ID: mdl-33578756

ABSTRACT

Recently, numerous polymer materials have been employed as drug carrier systems in medicinal research, and their detailed properties have been thoroughly evaluated. Water-soluble polymer carriers play a significant role between these studied polymer systems as they are advantageously applied as carriers of low-molecular-weight drugs and compounds, e.g., cytostatic agents, anti-inflammatory drugs, antimicrobial molecules, or multidrug resistance inhibitors. Covalent attachment of carried molecules using a biodegradable spacer is strongly preferred, as such design ensures the controlled release of the drug in the place of a desired pharmacological effect in a reasonable time-dependent manner. Importantly, the synthetic polymer biomaterials based on N-(2-hydroxypropyl) methacrylamide (HPMA) copolymers are recognized drug carriers with unique properties that nominate them among the most serious nanomedicines candidates for human clinical trials. This review focuses on advances in the development of HPMA copolymer-based nanomedicines within the passive and active targeting into the place of desired pharmacological effect, tumors, inflammation or bacterial infection sites. Specifically, this review highlights the safety issues of HPMA polymer-based drug carriers concerning the structure of nanomedicines. The main impact consists of the improvement of targeting ability, especially concerning the enhanced and permeability retention (EPR) effect.

7.
Int J Mol Sci ; 21(17)2020 Aug 21.
Article in English | MEDLINE | ID: mdl-32825790

ABSTRACT

Stimulus-sensitive polymer drug conjugates based on high molecular weight N-(2-hydroxypropyl) methacrylamide (HPMA) copolymers carrying doxorubicin via a pH-dependent cleavable bond (pHPMA-Dox) were previously shown to be able to overcome multi-drug resistance. Nevertheless, a tumor type dependent differential response was observed. Although an improved and more selective tumor accumulation of pHPMA-Dox is generally achieved due to the enhanced permeability and retention (EPR) effect, little is known about the fate of these conjugates upon entering the tumor tissue, which could explain the different responses. In this study, we compared in vitro and in vivo accumulation and Dox-activation of pHPMA-Dox in three cancer cell line models (1411HP, A2780cis, HT29) and derived xenograft tumors using a near-infrared fluorescence-labeled pHPMA-Dox conjugate. Firstly, cytotoxicity assays using different pH conditions proved a stepwise, pH-dependent increase in cytotoxic activity and revealed comparable sensitivity among the cell lines. Using multispectral fluorescence microscopy, we were able to track the distribution of drug and polymeric carrier simultaneously on cellular and histological levels. Microscopic analyses of cell monolayers confirmed the assumed mechanism of cell internalization of the whole conjugate followed by intracellular cleavage and nuclear accumulation of Dox in all three cell lines. In contrast, intratumoral distribution and drug release in xenograft tumors were completely different and were associated with different tissue substructures and microenvironments analyzed by Azan- and Hypoxisense®-staining. In 1411HP tumors, large vessels and less hypoxic/acidic microenvironments were associated with a pattern resulting from consistent tissue distribution and cellular uptake as whole conjugate followed by intracellular drug release. In A2780cis tumors, an inconsistent pattern of distribution partly resulting from premature drug release was associated with a more hypoxic/acidic microenvironment, compacted tumor tissue with compressed vessels and specific pre-damaged tissue structures. A completely different distribution pattern was observed in HT29 tumors, resulting from high accumulation of polymer in abundant fibrotic structures, with small embedded vessels featuring this tumor type together with pronounced premature drug release due to the strongly hypoxic/acidic microenvironment. In conclusion, the pattern of intratumoral distribution and drug release strongly depends on the tumor substructure and microenvironment and may result in different degrees of therapeutic efficacy. This reflects the pronounced heterogeneity observed in the clinical application of nanomedicines and can be exploited for the future design of such conjugates.


Subject(s)
Antineoplastic Agents/chemistry , Antineoplastic Agents/pharmacokinetics , Doxorubicin/pharmacokinetics , Drug Carriers/pharmacokinetics , Animals , Antineoplastic Agents/administration & dosage , Carbocyanines/chemistry , Cell Line, Tumor , Doxorubicin/administration & dosage , Doxorubicin/chemistry , Drug Carriers/administration & dosage , Drug Carriers/chemistry , Drug Delivery Systems , Drug Liberation , Fluorescent Dyes/chemistry , HT29 Cells , Humans , Hydrogen-Ion Concentration , Male , Methacrylates/chemistry , Mice, Nude , Molecular Weight , Tissue Distribution , Tumor Microenvironment , Xenograft Model Antitumor Assays
8.
Biomacromolecules ; 21(8): 3122-3133, 2020 08 10.
Article in English | MEDLINE | ID: mdl-32697592

ABSTRACT

The development of efficient galectin-3 (Gal-3) inhibitors draws attention in the field of anti-cancer therapy, especially due to the prominent role of extra- and intracellular Gal-3 in vital processes of cancerogenesis, such as immunosuppression, stimulation of tumor cells proliferation, survival, invasion, apoptotic resistance, and metastasis formation and progression. Here, by combining poly-LacNAc (Galß4GlcNAc)-derived oligosaccharides with N-(2-hydroxypropyl) methacrylamide (HPMA) copolymers, we synthesized multivalent glycopolymer inhibitors with a high potential to target extracellular and intracellular Gal-3. The inhibitory capabilities of the best conjugate in the studied series were in the nanomolar range proving the excellent Gal-3 inhibitory potential. Moreover, thorough investigation of the inhibitory effect in the biological conditions showed that the glycopolymers strongly inhibited Gal-3-induced apoptosis of T lymphocytes and suppressed migration and spreading of colorectal, breast, melanoma, and prostate cancer cells. In sum, the strong inhibitory activity toward Gal-3, combined with favorable pharmacokinetics of HPMA copolymers ensuring enhanced tumor accumulation via the enhanced permeability and retention effect, nominate the glycopolymers containing LacdiNAc-LacNAc (GalNAcß4GlcNAcß3Galß4GlcNAc) tetrasaccharide as promising tools for preclinical in anti-cancer therapy evaluation.


Subject(s)
Apoptosis , Galectin 3 , Cell Line, Tumor , Cell Movement , Humans , Male , Polymers , T-Lymphocytes
9.
J Control Release ; 321: 718-733, 2020 05 10.
Article in English | MEDLINE | ID: mdl-32142741

ABSTRACT

The study compared the physico-chemical and biological properties of a water-soluble star-like polymer nanomedicine with three micellar nanomedicines formed by self-assembly of amphiphilic copolymers differing in their hydrophobic part (statistical, block and thermosensitive block copolymers). All nanomedicines showed a pH-responsive release of the drug, independent on polymer structure. Significant penetration of all polymer nanomedicines into tumor cells in vitro was demonstrated, where the most pronounced effect was observed for statistical- or diblock copolymer-based micellar systems. Tumor accumulation in vivo was dependent on the stability of the nanomedicines in solution, being the highest for the star-like system, followed by the most stable micellar nanomedicines. The star-like polymer nanomedicine showed a superior therapeutic effect. Since the micellar systems exhibited slightly lower systemic toxicity, they may exhibit the same efficacy as the star-like soluble system when administered at equitoxic doses. In conclusion, treatment efficacy of studied nanomedicines was directly controlled by the drug pharmacokinetics, namely by their ability to circulate in the bloodstream for the time needed for effective accumulation in the tumor due to the enhanced permeability and retention (EPR) effect. Easy and scalable synthesis together with the direct reconstitution possibility for nanomedicine application made these nanomedicines excellent candidates for further clinical evaluation.


Subject(s)
Doxorubicin , Micelles , Nanomedicine , Polymers , Doxorubicin/chemistry , Drug Carriers , Hydrodynamics , Water
10.
Pharmaceutics ; 12(2)2020 Jan 28.
Article in English | MEDLINE | ID: mdl-32013056

ABSTRACT

The binding of plasma proteins to a drug carrier alters the circulation of nanoparticles (NPs) in the bloodstream, and, as a consequence, the anticancer efficiency of the entire nanoparticle drug delivery system. We investigate the possible interaction and the interaction mechanism of a polymeric drug delivery system based on N-(2-hydroxypropyl)methacrylamide (HPMA) copolymers (pHPMA) with the most abundant proteins in human blood plasma-namely, human serum albumin (HSA), immunoglobulin G (IgG), fibrinogen (Fbg), and apolipoprotein (Apo) E4 and A1-using a combination of small-angle X-ray scattering (SAXS), analytical ultracentrifugation (AUC), and nuclear magnetic resonance (NMR). Through rigorous investigation, we present evidence of weak interactions between proteins and polymeric nanomedicine. Such interactions do not result in the formation of the protein corona and do not affect the efficiency of the drug delivery.

11.
Acta Biomater ; 106: 256-266, 2020 04 01.
Article in English | MEDLINE | ID: mdl-32058082

ABSTRACT

Here, we describe innovative synthesis of well-defined biocompatible N-(2-hydroxypropyl) methacrylamide (HPMA)-based polymer carriers and their drug conjugates with pirarubicin intended for controlled drug delivery and pH-triggered drug activation in tumor tissue. Polymer carrier synthesis was optimized to obtain well-defined linear HPMA-based polymer precursor with dispersity close to 1 and molar mass close to renal threshold with minimal synthesis steps. The developed synthesis enables preparation of tailored polymer nanomedicines with highly enhanced biological behavior in vivo, especially the biodistribution, urine elimination, tumor accumulation and anticancer activity. STATEMENT OF SIGNIFICANCE: The manuscript reports on novel synthesis and detailed physicochemical characterization and in vivo evaluation of well-defined biocompatible hydrophilic copolymers based on N-(2-hydroxypropyl)methacrylamide (HPMA) and their drug conjugates with pirarubicin enabling controlled drug delivery and pH-triggered drug activation in tumor tissue. Polymer carrier synthesis was optimized to obtain well-defined linear HPMA-based polymer precursor with minimal synthesis steps using controlled polymerization. Compared to previously published HPMA-based polymer drug conjugates whose polymer carriers were prepared by classical route via free radical polymerization, the newly prepared polymer drug conjugates exhibited enhanced biological behavior in vivo, especially the prolonged blood circulation, urine elimination, tumor accumulation and excellent anticancer activity. We believe that the newly prepared well-defined polymer conjugates could significantly enhance tumor therapy in humans.


Subject(s)
Acrylamides/therapeutic use , Antineoplastic Agents/therapeutic use , Doxorubicin/analogs & derivatives , Sarcoma, Experimental/drug therapy , Acrylamides/chemical synthesis , Acrylamides/pharmacokinetics , Animals , Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/pharmacokinetics , Caproates/chemical synthesis , Caproates/pharmacokinetics , Caproates/therapeutic use , Cell Line, Tumor , Doxorubicin/chemical synthesis , Doxorubicin/pharmacokinetics , Doxorubicin/therapeutic use , Drug Delivery Systems , Mice , Nanomedicine/methods , Polymerization
12.
Biomacromolecules ; 21(2): 641-652, 2020 02 10.
Article in English | MEDLINE | ID: mdl-31904940

ABSTRACT

N-Acetyllactosamine (LacNAc; Galß4GlcNAc) is a typical disaccharide ligand of galectins. The most abundant members of these human lectins, galectin-1 (Gal-1) and galectin-3 (Gal-3), participate in a number of pathologies including cancerogenesis and metastatic formation. In this study, we synthesized a series of fifteen N-(2-hydroxypropyl)methacrylamide (HPMA)-based glycopolymers with varying LacNAc amounts and presentations and evaluated the impact of their architecture on the binding affinity to Gal-1 and Gal-3. The controlled radical reversible addition-fragmentation chain transfer copolymerization technique afforded linear polymer precursors with comparable molecular weight (Mn ≈ 22,000 g mol-1) and narrow dispersity (D̵ ≈ 1.1). The precursors were conjugated with the functionalized LacNAc disaccharide (4-22 mol % content in glycopolymer) prepared by enzymatic synthesis under catalysis by ß-galactosidase from Bacillus circulans. The structure-affinity relationship study based on the enzyme-linked immunosorbent assay revealed that the type of LacNAc presentation, individual or clustered on bi- or trivalent linkers, brings a clear discrimination (almost 300-fold) between Gal-1 and Gal-3, reaching avidity to Gal-1 in the nanomolar range. Whereas Gal-1 strongly preferred a dense presentation of individually distributed LacNAc epitopes, Gal-3 preferred a clustered LacNAc presentation. Such a strong galectin preference based just on the structure of a multivalent glycopolymer type is exceptional. The prepared nontoxic, nonimmunogenic, and biocompatible glycopolymers are prospective for therapeutic applications requiring selectivity for one particular galectin.


Subject(s)
Acrylamides/chemistry , Amino Sugars/chemistry , Blood Proteins/analysis , Galectin 1/analysis , Galectins/analysis , Polymers/chemistry , Bacillus/enzymology , Blood Proteins/metabolism , Catalysis , Disaccharides/chemical synthesis , Enzyme-Linked Immunosorbent Assay , Epitopes , Galectin 1/metabolism , Galectins/metabolism , Magnetic Resonance Spectroscopy , Polymerization , Polymers/metabolism , Polymers/pharmacology , beta-Galactosidase/metabolism
13.
Pharmaceutics ; 11(9)2019 Sep 12.
Article in English | MEDLINE | ID: mdl-31547308

ABSTRACT

Targeted drug delivery using nano-sized carrier systems with targeting functions to malignant and inflammatory tissue and tailored controlled drug release inside targeted tissues or cells has been and is still intensively studied. A detailed understanding of the correlation between the pharmacokinetic properties and structure of the nano-sized carrier is crucial for the successful transition of targeted drug delivery nanomedicines into clinical practice. In preclinical research in particular, fluorescence imaging has become one of the most commonly used powerful imaging tools. Increasing numbers of suitable fluorescent dyes that are excitable in the visible to near-infrared (NIR) wavelengths of the spectrum and the non-invasive nature of the method have significantly expanded the applicability of fluorescence imaging. This chapter summarizes non-invasive fluorescence-based imaging methods and discusses their potential advantages and limitations in the field of drug delivery, especially in anticancer therapy. This chapter focuses on fluorescent imaging from the cellular level up to the highly sophisticated three-dimensional imaging modality at a systemic level. Moreover, we describe the possibility for simultaneous treatment and imaging using fluorescence theranostics and the combination of different imaging techniques, e.g., fluorescence imaging with computed tomography.

14.
Mol Pharm ; 16(8): 3452-3459, 2019 08 05.
Article in English | MEDLINE | ID: mdl-31294568

ABSTRACT

N-(2-Hydroxypropyl)methacrylamide copolymer conjugates of pirarubicin (THP), P-THP, accumulates selectively in solid tumor tissue by the enhanced permeability and retention (EPR) effect. Despite of high accumulation in solid tumors, some macromolecular antitumor agents show poor therapeutic outcome because of poor tissue diffusion into the tumor as well as obstructed tumor blood flow. Here, we confirmed that cellular uptake of P-THP was 25 times less than that of free THP at 1-4 h incubation time in vitro. The passage of P-THP through the confluent tight-monolayer cells junction was 12 times higher than free THP, and P-THP penetrated deeper into the tumor cell spheroid (1.3-1.7-fold) than free THP in 4 h. In addition, P-THP showed cytotoxicity comparable to that of free THP to tumor-cells in spheroid form, despite of 7 times lower cytotoxicity of P-THP to the monolayer cells to that of free THP in vitro. These results indicate that P-THP administration can exhibit deeper diffusion into the tumor cell spheroid than free THP. As a consequence, P-THP exhibits more efficient antitumor activity than free THP in vivo, which is also supported by better pharmacokinetics and tumor accumulation of P-THP than free THP.


Subject(s)
Acrylamides/chemistry , Antineoplastic Agents/administration & dosage , Doxorubicin/analogs & derivatives , Drug Carriers/chemistry , Neoplasms/drug therapy , Antineoplastic Agents/pharmacokinetics , Doxorubicin/administration & dosage , Doxorubicin/pharmacokinetics , Drug Screening Assays, Antitumor , HCT116 Cells , Humans , Neoplasms/pathology , Spheroids, Cellular
15.
Biomacromolecules ; 20(2): 854-870, 2019 02 11.
Article in English | MEDLINE | ID: mdl-30608149

ABSTRACT

Small molecule Toll-like receptor-7 and -8 agonists (TLR-7/8a) can be used as vaccine adjuvants to induce CD8 T cell immunity but require formulations that prevent systemic toxicity and focus adjuvant activity in lymphoid tissues. Here, we covalently attached TLR-7/8a to polymers of varying composition, chain architecture and hydrodynamic behavior (∼300 nm submicrometer particles, ∼10 nm micelles and ∼4 nm flexible random coils) and evaluated how these parameters of polymer-TLR-7/8a conjugates impact adjuvant activity in vivo. Attachment of TLR-7/8a to any of the polymer compositions resulted in a nearly 10-fold reduction in systemic cytokines (toxicity). Moreover, both lymph node cytokine production and the magnitude of CD8 T cells induced against protein antigen increased with increasing polymer-TLR-7/8a hydrodynamic radius, with the submicrometer particle inducing the highest magnitude responses. Notably, CD8 T cell responses induced by polymer-TLR-7/8a were dependent on CCR2+ monocytes and IL-12, whereas responses by a small molecule TLR-7/8a that unexpectedly persisted in vaccine-site draining lymph nodes (T1/2 = 15 h) had less dependence on monocytes and IL-12 but required Type I IFNs. This study shows how modular properties of synthetic adjuvants can be chemically programmed to alter immunity in vivo through distinct immunological mechanisms.


Subject(s)
Adjuvants, Immunologic/chemistry , CD8-Positive T-Lymphocytes/drug effects , Lymphocyte Activation , Micelles , Toll-Like Receptor 7/agonists , Toll-Like Receptor 8/agonists , Adjuvants, Immunologic/administration & dosage , Adjuvants, Immunologic/pharmacology , Animals , CD8-Positive T-Lymphocytes/immunology , Cell Line , Cells, Cultured , Cytokines/metabolism , Female , Hydrodynamics , Mice , Mice, Inbred C57BL , Protein Binding
16.
J Control Release ; 289: 44-55, 2018 11 10.
Article in English | MEDLINE | ID: mdl-30248447

ABSTRACT

In this study, we report the in vivo anti-lymphoma efficacy and diagnostic potential of newly designed near-infrared fluorescent dye containing polymer-doxorubicin conjugates using murine models of malignant lymphomas including one cell line-derived xenograft (RAJI) and two patient-derived lymphoma xenografts (VFN-D1 and VFN-M2). Two types of passively targeted conjugates differing in architecture of the polymer backbone were synthesized. One of the conjugates was designed using a single linear polymer chain, and the second was more sophisticated with a star-shaped high-molecular-weight (HMW) polymer employing a dendrimer core. The linear HPMA copolymers were linked to the dendrimer core via a one-point attachment, thus forming a hydrophilic polymer shell. Both polymer-doxorubicin conjugates were long-circulating with reduced side effects. Both polymer prodrugs were designed as stimuli-sensitive systems in which the anti-cancer drug doxorubicin was attached to the hydrophilic copolymers via a pH-labile hydrazone linkage. Such polymer prodrugs were fairly stable in aqueous solutions at pH 7.4, and the drug was readily released in mildly acid environments at pH 5-6.5 by hydrolysis of the hydrazone bonds. In addition, polymers were labelled with near-infrared fluorescent dye enabling long term in vivo visualization. Malignant lymphomas represent the most common type of haematological malignancies. Therapy for the majority of malignant lymphomas consists of multi-agent chemotherapy based on an anthracycline doxorubicin, the most prominent side effect of which is cardiotoxicity. We have demonstrated significant anti-lymphoma efficacy of the polymer-doxorubicin conjugates when compared to equally toxic doses of conventional (unbound) doxorubicin in all tested models. Favourable pharmacokinetics for carried drug and labelled polymer carrier was observed, showing predominant uptake of the drug and polymer itself in the tumour mass. In addition, we have observed a promising diagnostic potential of fluorescently labelled polymer prodrugs. Dynamically analyzed fluorescence intensity over subcutaneously xenografted lymphomas closely corresponded to changes in the lymphoma tumour volumes, thereby enabling a non-invasive assessment of treatment efficacy.


Subject(s)
Antineoplastic Agents/chemistry , Doxorubicin/chemistry , Fluorescent Dyes/chemistry , Lymphoma/diagnostic imaging , Lymphoma/drug therapy , Nanocapsules/chemistry , Acrylamides/chemistry , Animals , Antineoplastic Agents/therapeutic use , Cell Line, Tumor , Cell Survival/drug effects , Dendrimers/chemistry , Doxorubicin/therapeutic use , Drug Liberation , Female , Heterografts , Humans , Hydrazones/chemistry , Hydrogen-Ion Concentration , Hydrophobic and Hydrophilic Interactions , Lymphoma/pathology , Methacrylates/chemistry , Mice , Polymerization , Polymers/chemistry
17.
Eur J Pharm Biopharm ; 131: 141-150, 2018 Oct.
Article in English | MEDLINE | ID: mdl-30075311

ABSTRACT

Ritonavir (RIT) is a widely used antiviral drug that acts as an HIV protease inhibitor with emerging potential in anticancer therapies. RIT causes inhibition of P-glycoprotein, which plays an important role in multidrug resistance (MDR) in cancer cells when overexpressed. Moreover, RIT causes mitochondrial dysfunction, leading to decreased ATP production and reduction of caveolin I expression, which can affect cell migration and tumor progression. To increase its direct antitumor activity, decrease severe side effects induced by the use of free RIT and improve its pharmacokinetics, ritonavir 5-methyl-4-oxohexanoate (RTV) was synthesized and conjugated to a tumor-targeted polymer carrier based on a N-(2-hydroxypropyl)methacrylamide (HPMA) copolymer. Here we demonstrated that polymer-bound RTV enhanced the internalization of polymer-RTV conjugates, differing in RTV content from 4 to 15 wt%, in HeLa cancer cells compared with polymer without RTV. The most efficient influx and internalization properties were determined for the polymer conjugate bearing 11 wt% of RTV. This conjugate was internalized by cells using both caveolin- and clathrin-dependent endocytic pathways in contrast to the RTV-free polymer, which was preferentially internalized only by clathrin-mediated endocytosis. Moreover, we found the co-localization of the RTV-conjugate with mitochondria and a significant decrease of ATP production in treated cells. Thus, the impact on mitochondrial mechanism can influence the function of ATP-dependent P-glycoprotein and also the cell viability of MDR cancer cells. Overall, this study demonstrated that the polymer-RTV conjugate is a promising polymer-based nanotherapeutic, suitable for antitumor combination therapy with other anticancer drugs and a potential mitochondrial drug delivery system.


Subject(s)
Antineoplastic Agents/chemistry , Methacrylates/chemistry , Nanostructures/chemistry , Ritonavir/chemistry , ATP Binding Cassette Transporter, Subfamily B, Member 1/drug effects , ATP Binding Cassette Transporter, Subfamily B, Member 1/metabolism , Adenosine Triphosphate/biosynthesis , Antineoplastic Agents/administration & dosage , Caveolin 1/biosynthesis , Caveolin 1/genetics , Clathrin/pharmacology , Drug Resistance, Neoplasm/drug effects , Endocytosis/drug effects , HeLa Cells , Humans , Hydrogen-Ion Concentration , Polymers , Ritonavir/administration & dosage , Ritonavir/analogs & derivatives
18.
Langmuir ; 34(27): 7998-8006, 2018 07 10.
Article in English | MEDLINE | ID: mdl-29949376

ABSTRACT

Amphiphilic poly( N-(2-hydroxypropyl)methacrylamide) copolymers ( pHPMA) bearing cholesterol side groups in phosphate buffer saline self-assemble into nanoparticles (NPs) which can be used as tumor-targeted drug carriers. It was previously shown by us that human serum albumin (HSA) interacts weakly with the NPs. However, the mechanism of this binding could not be resolved due to overlapping of signals from the complex system. Here, we use fluorescence labeling to distinguish the components and to characterize the binding: On the one hand, a fluorescent dye was attached to pHPMA, so that the diffusion behavior of the NPs could be studied in the presence of HSA using fluorescence lifetime correlation spectroscopy. On the other hand, quenching of the intrinsic fluorescence of HSA revealed the origin of the binding, which is mainly the complexation between HSA and cholesterol side groups. Furthermore, a binding constant was obtained.


Subject(s)
Drug Carriers/chemistry , Nanoparticles/chemistry , Serum Albumin, Human , Spectrometry, Fluorescence , Humans , Macromolecular Substances , Protein Binding , Serum Albumin , Serum Albumin, Human/metabolism
19.
Nanoscale ; 10(13): 6194-6204, 2018 Mar 29.
Article in English | MEDLINE | ID: mdl-29560983

ABSTRACT

In this paper, we revised the current understanding of the protein corona that is created on the surface of nanoparticles in blood plasma after an intravenous injection. We have focused on nanoparticles that have a proven therapeutic outcome. These nanoparticles are based on two types of biocompatible amphiphilic copolymers based on N-(2-hydroxypropyl)methacrylamide (HPMA): a block copolymer, poly(ε-caprolactone) (PCL)-b-poly(HPMA), and a statistical HPMA copolymer bearing cholesterol moieties, which have been tested both in vitro and in vivo. We studied the interaction of nanoparticles with blood plasma and selected blood plasma proteins by electron paramagnetic resonance (EPR), isothermal titration calorimetry, dynamic light scattering, and cryo-transmission electron microscopy. The copolymers were labeled with TEMPO radicals at the end of hydrophobic PCL or along the hydrophilic HPMA chains to monitor changes in polymer chain dynamics caused by protein adsorption. By EPR and other methods, we were able to probe specific interactions between nanoparticles and blood proteins, specifically low- and high-density lipoproteins, immunoglobulin G, human serum albumin (HSA), and human plasma. It was found that individual proteins and plasma have very low binding affinity to nanoparticles. We observed no hard corona around HPMA-based nanoparticles; with the exception of HSA the proteins showed no detectable binding to the nanoparticles. Our study confirms that a classical "hard corona-soft corona" paradigm is not valid for all types of nanoparticles and each system has a unique protein corona that is determined by the nature of the NP material.


Subject(s)
Blood Proteins/chemistry , Methacrylates/chemistry , Nanoparticles/chemistry , Protein Corona , Humans , Nanomedicine , Polyesters/chemistry , Polymers
20.
Mol Pharm ; 15(9): 3654-3663, 2018 09 04.
Article in English | MEDLINE | ID: mdl-29543465

ABSTRACT

Herein, the biodegradable micelle-forming amphiphilic N-(2-hydroxypropyl) methacrylamide (HPMA)-based polymer conjugates with the anticancer drug doxorubicin (Dox) designed for enhanced tumor accumulation were investigated, and the influence of their stability in the bloodstream on biodistribution, namely, tumor uptake, and in vivo antitumor efficacy were evaluated in detail. Dox was attached to the polymer carrier by a hydrazone bond enabling pH-controlled drug release. While the polymer-drug conjugates were stable in a buffer at pH 7.4 (mimicking bloodstream environment), Dox was released in a buffer under mild acidic conditions modeling the tumor microenvironment or cells. The amphiphilic polymer carriers differed in the structure of hydrophobic cholesterol derivative moieties bound to the HPMA copolymers via a hydrolyzable hydrazone bond, exhibiting different rates of micellar structure disintegration at various pH values. Considerable dependence of the studied polymer-drug conjugate biodistribution on the stability of the micellar structure was observed in neutral, bloodstream-mimicking, environment, showing that a faster rate of the micelle disintegration in pH 7.4 increased the conjugate blood clearance, decreased tumor accumulation, and significantly reduced the tumor:blood and tumor:muscle ratios. Similarly, the final therapeutic outcome was strongly affected by the stability of the micellar structure because the most stable micellar conjugate showed an almost similar therapeutic outcome as the water-soluble, nondegradable, high-molecular-weight starlike HPMA copolymer-Dox conjugate, which was highly efficient in the treatment of solid tumors in mice. Based on the results, we conclude that the bloodstream stability of micellar polymer-anticancer drug conjugates, in addition to their low side toxicity, is a crucial parameter for their efficient solid tumor accumulation and high in vivo antitumor activity.


Subject(s)
Doxorubicin/chemistry , Doxorubicin/pharmacokinetics , Polymers/chemistry , Animals , Antineoplastic Agents/chemistry , Antineoplastic Agents/pharmacokinetics , Antineoplastic Agents/therapeutic use , Doxorubicin/therapeutic use , Drug Carriers/chemistry , Drug Liberation , Female , Hydrogen-Ion Concentration , Hydrophobic and Hydrophilic Interactions , Lymphoma/blood , Lymphoma/drug therapy , Mice , Mice, Inbred C57BL , Micelles
SELECTION OF CITATIONS
SEARCH DETAIL
...