Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Chemosphere ; 276: 130174, 2021 Aug.
Article in English | MEDLINE | ID: mdl-33743425

ABSTRACT

Volatile organic compounds (VOC) and polycyclic aromatic hydrocarbons (PAH), emitted in the environment from a wide range of combustion sources, are hazardous to human health and considered important precursors of both primary and secondary particulate pollutants. In the present work, light hydrocarbons up to C9, as main components of combustion-derived VOC, and PAH produced in fuel-rich conditions of premixed ethylene flames were analyzed by implementing a molecular-beam time of flight mass spectrometer (MB-TOFMS), purposely built for on-line fast monitoring of the environmental impact of combustion systems. The reliability of the MB-TOFMS was preliminarily verified on a slightly-sooting flame, comparing the results with those obtained by batch sampling and gas chromatographic techniques. Electron ionization (EI) and multi-photon ionization (MPI) were used as MB-TOFMS sources and tested on combustion gases of a no-sooting premixed ethylene flame where VOC and PAH are present in traces not detectable with batch sampling and conventional analytical techniques. The mass identification accuracy was improved and guaranteed by systematically performing internal mass calibration, exploiting the formation of "in situ" clusters from combustion water in the molecular beam apparatus. Selective and sensitive monitoring of light hydrocarbons and PAH, derived from oxidation and pyrolysis reactions featuring combustion, was shown to be especially effective when using the MB-TOFMS equipped with MPI source. This technique showed to be effective also for the detection of radical species that are important for the risk assessment of aerosol and fundamental understanding of aerosol chemistry at a molecular level.


Subject(s)
Air Pollutants , Polycyclic Aromatic Hydrocarbons , Air Pollutants/analysis , Gas Chromatography-Mass Spectrometry , Humans , Mass Spectrometry , Polycyclic Aromatic Hydrocarbons/analysis , Reproducibility of Results
2.
Sci Rep ; 9(1): 14566, 2019 10 10.
Article in English | MEDLINE | ID: mdl-31601923

ABSTRACT

The continuous synthesis in controlled gas flame reactors is here demonstrated as a very effective approach for the direct and easy production of structurally reproducible carbon nanodots. In this work, the design of a simple deposition system, inserted into the reactor, is introduced. A controlled flame reactor is employed in the present investigation. The system was optimized for the production of carbon nanoparticles including fluorescent nanocarbons. Blue and green fluorescent carbon could be easily separated from the carbon nanoparticles by extraction with organic solvents and characterized by advanced chemical (size exclusion chromatography and mass spectrometry) and spectroscopic analysis. The blue fluorescent carbon comprised a mixture of molecular fluorophores and aromatic domains; the green fluorescent carbon was composed of aromatic domains (10-20 aromatic condensed rings), bonded and/or turbostratically stacked together. The green-fluorescent carbon nanodots produced in the flame reactor were insoluble in water but soluble in N-methylpyrrolidinone and showed excitation-independent luminescence. These results provide insights for a simple and controlled synthesis of carbon nanodots with specific and versatile features, which is a promising pathway for their use in quite different applicative sectors of bioimaging.

3.
Spectrochim Acta A Mol Biomol Spectrosc ; 152: 134-48, 2016 Jan 05.
Article in English | MEDLINE | ID: mdl-26208268

ABSTRACT

We have analyzed a set of 51 PAHs whose structures have been hypothesized from mass spectrometry data collected on samples extracted from carbon particles of combustion origin. We have obtained relationships between infrared absorption signals in the fingerprint region (mid-IR) and the chemical structures of PAHs, thus proving the potential of IR spectroscopy for the characterization of the molecular structure of aromatic combustion products. The results obtained here for the spectroscopic characterization of PAHs can be also of interest in Materials Science and Astrophysics.

4.
ACS Appl Mater Interfaces ; 4(9): 4491-8, 2012 Sep 26.
Article in English | MEDLINE | ID: mdl-22891711

ABSTRACT

Reduction of strongly oxidized carbon black by hydrazine hydrate yields water-insoluble graphene-like sheets that undergo to self-assembling in thin film on surfaces after drying. The height of a drop-casted graphene-like film was determined by atomic force microscopy (AFM) to be around 20 nm, corresponding to approximately 25 graphene-like layers. The oxidized carbon black and the corresponding reduced form were carefully characterized.

5.
Rapid Commun Mass Spectrom ; 22(4): 573-81, 2008.
Article in English | MEDLINE | ID: mdl-18220328

ABSTRACT

A time-of-flight mass spectrometer in reflectron configuration has been used for the real-time detection of combustion products. The products of a premixed laminar C2H4/O2 flame at atmospheric pressure were sampled along its axis, diluted with inert gas and carried to the ion source as a molecular beam under minimal perturbation. Electron ionization and different optical ionization sources are compared. Photoionization was achieved with laser radiation from a Nd:YAG nanosecond pulsed laser at two different wavelengths in the UV range (266 and 355 nm). The mass spectra obtained using laser wavelength of 355 nm and electron ionization present a series of ions regularly spaced by 18 m/z units up to m/z 2000. This series allowed precise calibration of the instrument for compounds of high molecular weight. Information on the chemical nature of the analyzed species has been obtained by comparing mass spectra produced with different ionization methods. In order to better understand the growth mechanisms, polycyclic aromatic hydrocarbon sequences have been analyzed by fast Fourier transform of the mass spectra.

6.
Environ Eng Sci ; 25(8): 1107-1114, 2008 Oct.
Article in English | MEDLINE | ID: mdl-22476005

ABSTRACT

The 10th International Congress on Combustion Byproducts and their Health Effects was held in Ischia, Italy, from June 17-20, 2007. It is sponsored by the US NIEHS, NSF, Coalition for Responsible Waste Incineration (CRWI), and Electric Power Research Institute (EPRI). The congress focused on: the origin, characterization, and health impacts of combustion-generated fine and ultrafine particles; emissions of mercury and dioxins, and the development/application of novel analytical/diagnostic tools. The consensus of the discussion was that particle-associated organics, metals, and persistent free radicals (PFRs) produced by combustion sources are the likely source of the observed health impacts of airborne PM rather than simple physical irritation of the particles. Ultrafine particle-induced oxidative stress is a likely progenitor of the observed health impacts, but important biological and chemical details and possible catalytic cycles remain unresolved. Other key conclusions were: (1) In urban settings, 70% of airborne fine particles are a result of combustion emissions and 50% are due to primary emissions from combustion sources, (2) In addition to soot, combustion produces one, possibly two, classes of nanoparticles with mean diameters of ~10 nm and ~1 nm. (3) The most common metrics used to describe particle toxicity, viz. surface area, sulfate concentration, total carbon, and organic carbon, cannot fully explain observed health impacts, (4) Metals contained in combustion-generated ultrafine and fine particles mediate formation of toxic air pollutants such as PCDD/F and PFRs. (5) The combination of metal-containing nanoparticles, organic carbon compounds, and PFRs can lead to a cycle generating oxidative stress in exposed organisms.

7.
Anal Chem ; 76(7): 2138-43, 2004 Apr 01.
Article in English | MEDLINE | ID: mdl-15053681

ABSTRACT

The contribution of two- to seven-ring polycyclic aromatic hydrocarbons (PAH) and of larger aromatic structures contained in complex PAH-laden mixtures collected in flames was evaluated by fluorescence spectroscopy. A composition procedure of the fluorescence spectra of individual PAHs, analyzed by gas chromatography/mass spectrometry (GC/MS) was applied for the evaluation of their contribution to the fluorescence spectra of PAH-laden mixtures. In this way, it was possible to put in evidence the contribution to the total fluorescence spectrum of high molecular weight aromatic species present in the PAH-laden mixtures and not detectable by GC/MS. Qualitative and quantitative interpretation of synchronous and conventional fluorescence spectra of PAH-laden mixtures formed in combustion processes was proposed. The composition procedure was showed to be reliable in the UV-visible region for samples dissolved in cyclohexane solutions, but failed in the UV region when the solvent contained heavy atoms, as in the case of dichloromethane. However, the heavy-atom solvent effect was not sufficient to explain the depression of the UV fluorescence signal. Energy transfer interaction between fluorene and other fluorescing PAHs was suggested to be also responsible for this effect on the basis of fluorescence studies performed on single PAHs and their mixtures in cyclohexane, methanol, and dichloromethane.

8.
Rapid Commun Mass Spectrom ; 18(3): 331-8, 2004.
Article in English | MEDLINE | ID: mdl-14755620

ABSTRACT

Oligomeric carbon and siloxane series have been observed by matrix-assisted laser desorption/ionisation mass spectrometry (MALDI-MS), during the analysis of the dichloromethane (DCM)-soluble fractions of condensable material recovered from fuel-rich flames. Laser desorption (LD) spectra showed a pattern of oligomeric dimethyl-siloxane structures with a spacing of 74 u. The siloxane series appears to have originated as contamination of samples by silicone oil used to lubricate connections of polymer tubing. This was confirmed by extracting silicone tubing and silicone grease with DCM followed by MALDI-MS analysis. A series of peaks with a mass spacing of 24 u was also observed, superimposed on the continuum of unresolved organic ions. This oligomeric series appears to correspond to polycyclic aromatics separated by (mainly) ethylene bridges. Thus LD-MS appears to have revealed a series of soot precursors, intermediate between polycyclic aromatics and particulate soot, which was not detected by MALDI-MS. More detailed work is necessary to define these species with precision.


Subject(s)
Carbon Compounds, Inorganic/analysis , Carbon/chemistry , Siloxanes/analysis , Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization/methods , Incineration , Lasers , Polycyclic Compounds/analysis , Polymers/analysis
SELECTION OF CITATIONS
SEARCH DETAIL
...