Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
J Pharmacol Exp Ther ; 325(2): 681-90, 2008 May.
Article in English | MEDLINE | ID: mdl-18287214

ABSTRACT

We have recently proposed the hypothesis that inhibition of the cyclic nucleotide phosphodiesterase (PDE) 10A may represent a new pharmacological approach to the treatment of schizophrenia (Curr Opin Invest Drug 8:54-59, 2007). PDE10A is highly expressed in the medium spiny neurons of the mammalian striatum (Brain Res 985:113-126, 2003; J Histochem Cytochem 54:1205-1213, 2006; Neuroscience 139:597-607, 2006), where the enzyme is hypothesized to regulate both cAMP and cGMP signaling cascades to impact early signal processing in the corticostriatothalamic circuit (Neuropharmacology 51:374-385, 2006; Neuropharmacology 51:386-396, 2006). Our current understanding of the physiological role of PDE10A and the therapeutic utility of PDE10A inhibitors derives in part from studies with papaverine, the only pharmacological tool for this target extensively profiled to date. However, this agent has significant limitations in this regard, namely, relatively poor potency and selectivity and a very short exposure half-life after systemic administration. In the present report, we describe the discovery of a new class of PDE10A inhibitors exemplified by TP-10 (2-{4-[-pyridin-4-yl-1-(2,2,2-trifluoro-ethyl)-1H-pyrazol-3-yl]-phenoxymethyl}-quinoline succinic acid), an agent with greatly improved potency, selectivity, and pharmaceutical properties. These new pharmacological tools enabled studies that provide further evidence that inhibition of PDE10A represents an important new target for the treatment of schizophrenia and related disorders of basal ganglia function.


Subject(s)
Phosphodiesterase Inhibitors/pharmacology , Phosphoric Diester Hydrolases/physiology , Pyrazoles/pharmacology , Quinolines/pharmacology , Schizophrenia/drug therapy , Animals , Behavior, Animal/drug effects , Brain/drug effects , Brain/metabolism , Cyclic AMP/metabolism , Cyclic GMP/metabolism , Dopamine/metabolism , Male , Mice , Mice, Inbred C57BL , Motor Activity/drug effects , Phosphodiesterase Inhibitors/blood , Phosphodiesterase Inhibitors/pharmacokinetics , Phosphoric Diester Hydrolases/genetics , Rats , Rats, Inbred F344 , Recombinant Proteins/antagonists & inhibitors , Recombinant Proteins/genetics , Reflex, Startle/drug effects , Schizophrenia/metabolism , Schizophrenia/physiopathology
2.
J Chem Ecol ; 28(7): 1349-64, 2002 Jul.
Article in English | MEDLINE | ID: mdl-12199500

ABSTRACT

Many plant secondary compounds induce detoxification activity in herbivorous insects. Although inducibility may be advantageous as a means of reducing costs associated with maintenance of metabolism, another benefit of inducibility is that it may allow insects to tailor their detoxification profiles to multiple substrate toxins in their diets. The parsnip webworm, Depressaria pastinacella, must contend with many types of furanocoumarins, toxins present in abundance in all of its host plants. Previous studies have documented that cytochrome P-450s are responsible for metabolism of furanocoumarins in this species and that this overall activity is inducible. In this study, we examined the effects of ingestion of single furanocoumarins on metabolism of multiple furanocoumarins and the ability of webworms to adjust their metabolism profiles to match artificial diets with furanocoumarin content differing qualitatively and quantitatively from the average content found in their principal host. That detoxification rates of newly molted sixth instars prior to feeding did not differ from those of actively feeding fifth or sixth instars suggests that constitutive activities of furanocoumarin-metabolizing enzymes are maintained in the absence of substrates. All of the induction assays in this study were performed with ultimate instars. Each of the furanocoumarins assayed was found to induce metabolism of five different furanocoumarin substrates; however, the induction profile was independent of the inducing agent. Consistent with this finding, webworms were incapable of matching their detoxification profiles to diets with different furanocoumarin compositions. Thus, the profile of detoxification within individuals of this species appears to be genetically fixed, although there is considerable variation in profiles among individuals.


Subject(s)
Adaptation, Physiological , Furocoumarins/metabolism , Lepidoptera/physiology , Plants, Edible/chemistry , Animals , Cytochrome P-450 Enzyme System/pharmacology , Diet , Larva/physiology , Lepidoptera/genetics
3.
J Chem Ecol ; 28(7): 1365-75, 2002 Jul.
Article in English | MEDLINE | ID: mdl-12199501

ABSTRACT

The parsnip webworm, Depressaria pastinacella, exhibits limited physiological resistance to furanocoumarin toxins in its principal host, the wild parsnip, Pastinaca sativa. These insects are typically found attacking individual plants low in furanocoumarins, relative to others within populations. They also feed preferentially on parthenocarpic fruits, which are lower in furanocoumarin content than are normal fruits. However, in a previous study with artificial diets, they did not appear to discriminate between high and low concentrations of furanocoumarins. In this study, the ability of webworms to distinguish between diets differing in furanocoumarin content was examined with an artificial diet containing wild parsnip and in green parsnip fruits with and without supplemental furanocoumarins. Larvae showed no preference for high or low furanocoumarin diets containing equal amounts of freeze-dried parsnip fruit powder. When given a choice between otherwise similar wild parsnip fruits, webworms strongly preferred fruits that were not augmented with furanocoumarins in one plant but showed no preference or only a weak preference for nonaugmented fruits in four other plants. In order to identify chemical constituents other than furanocoumarins that might determine feeding preferences, we compared the chemical profile of parthenocarpic fruits (which are preferred) to that of normal fruit. Octyl butyrate, a known deterrent to webworms, is highly correlated with furanocoumarin content, occurs in all plants, and differs significantly among normal and parthenocarpic fruit, suggesting that webworms may be able to avoid furanocoumarins by virtue of their behavioral response to octyl butyrate.


Subject(s)
Feeding Behavior , Furocoumarins/pharmacology , Lepidoptera/physiology , Plants, Edible/chemistry , Adaptation, Physiological , Animals , Avoidance Learning , Butyrates/pharmacology , Furocoumarins/metabolism , Larva/growth & development
SELECTION OF CITATIONS
SEARCH DETAIL
...