Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
Am J Physiol Heart Circ Physiol ; 327(2): H315-H330, 2024 Aug 01.
Article in English | MEDLINE | ID: mdl-38819385

ABSTRACT

Cardiovascular dysfunctions complicate 10-20% of pregnancies, increasing the risk for postpartum mortality. Various gestational insults, including preeclampsia are reported to be associated with adverse maternal cardiovascular outcomes. One such insult, gestational hyperandrogenism increases the risk for preeclampsia and other gestational morbidities but its impact on postpartum maternal health is not well known. We hypothesize that gestational hyperandrogenism such as testosterone (T) excess will adversely impact the maternal heart in the postpartum period. Pregnant ewes were injected with T propionate from day 30 to day 90 of gestation (term 147 days). Three months postpartum, echocardiograms, plasma cytokine profiles, cardiac morphometric, and molecular analysis were conducted [control (C) n = 6, T-treated (T) n = 7 number of animals]. Data were analyzed by two-tailed Student's t test and Cohen's effect size (d) analysis. There was a nonsignificant large magnitude decrease in cardiac output (7.64 ± 1.27 L/min vs. 10.19 ± 1.40, P = 0.22, d = 0.81) and fractional shortening in the T ewes compared with C (35.83 ± 2.33% vs. 41.50 ± 2.84, P = 0.15, d = 0.89). T treatment significantly increased 1) left ventricle (LV) weight-to-body weight ratio (2.82 ± 0.14 g/kg vs. 2.46 ± 0.08) and LV thickness (14.56 ± 0.52 mm vs. 12.50 ± 0.75), 2) proinflammatory marker [tumor necrosis factor-alpha (TNF-α)] in LV (1.66 ± 0.35 vs. 1.06 ± 0.18), 3) LV collagen (Masson's Trichrome stain: 3.38 ± 0.35 vs. 1.49 ± 0.15 and Picrosirius red stain: 5.50 ± 0.32 vs. 3.01 ± 0.23), 4) markers of LV apoptosis, including TUNEL (8.3 ± 1.1 vs. 0.9 ± 0.18), bcl-2-associated X protein (Bax)+-to-b-cell lymphoma 2 (Bcl2)+ ratio (0.68 ± 0.30 vs. 0.13 ± 0.02), and cleaved caspase 3 (15.4 ± 1.7 vs. 4.4 ± 0.38). These findings suggest that gestational testosterone excess adversely programs the maternal LV, leading to adverse structural and functional consequences in the postpartum period.NEW & NOTEWORTHY Using a sheep model of human translational relevance, this study provides evidence that excess gestational testosterone exposure such as that seen in hyperandrogenic disorders adversely impacts postpartum maternal hearts.


Subject(s)
Postpartum Period , Animals , Female , Pregnancy , Sheep , Testosterone/blood , Ventricular Function, Left , Testosterone Propionate/toxicity , Cytokines/blood , Cytokines/metabolism , Cardiac Output , Gestational Age
2.
Sci Rep ; 14(1): 6230, 2024 03 14.
Article in English | MEDLINE | ID: mdl-38486090

ABSTRACT

Gestational hyperandrogenism is a risk factor for adverse maternal and offspring outcomes with effects likely mediated in part via disruptions in maternal lipid homeostasis. Using a translationally relevant sheep model of gestational testosterone (T) excess that manifests maternal hyperinsulinemia, intrauterine growth restriction (IUGR), and adverse offspring cardiometabolic outcomes, we tested if gestational T excess disrupts maternal lipidome. Dimensionality reduction models following shotgun lipidomics of gestational day 127.1 ± 5.3 (term 147 days) plasma revealed clear differences between control and T-treated sheep. Lipid signatures of gestational T-treated sheep included higher phosphoinositides (PI 36:2, 39:4) and lower acylcarnitines (CAR 16:0, 18:0, 18:1), phosphatidylcholines (PC 38:4, 40:5) and fatty acids (linoleic, arachidonic, Oleic). Gestational T excess activated phosphatidylethanolamines (PE) and PI biosynthesis. The reduction in key fatty acids may underlie IUGR and activated PI for the maternal hyperinsulinemia evidenced in this model. Maternal circulatory lipids contributing to adverse cardiometabolic outcomes are modifiable by dietary interventions.


Subject(s)
Cardiovascular Diseases , Hyperandrogenism , Hyperinsulinism , Pregnancy , Female , Sheep , Animals , Phosphatidylethanolamines , Phosphatidylinositols , Testosterone , Fatty Acids , Homeostasis
3.
Mol Cell Endocrinol ; 588: 112202, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38552943

ABSTRACT

Developmental exposure to endocrine disruptors like bisphenol A (BPA) are implicated in later-life metabolic dysfunction. Leveraging a unique sheep model of developmental programming, we conducted an exploratory analysis of the programming effects of BPA on the endocrine pancreas. Pregnant ewes were administered environmentally relevant doses of BPA during gestational days (GD) 30-90, and pancreata from female fetuses and adult offspring were analyzed. Prenatal BPA exposure induced a trend toward decreased islet insulin staining and ß-cell count, increased glucagon staining and α-cell count, and increased α-cell/ß-cell ratio. Findings were most consistent in fetal pancreata assessed at GD90 and in adult offspring exposed to the lowest BPA dose. While not assessed in fetuses, adult islet fibrosis was increased. Collectively, these data provide further evidence that early-life BPA exposure is a likely threat to human metabolic health. Future studies should corroborate these findings and decipher the molecular mechanisms of BPA's developmental endocrine toxicity.


Subject(s)
Benzhydryl Compounds , Islets of Langerhans , Phenols , Prenatal Exposure Delayed Effects , Animals , Benzhydryl Compounds/toxicity , Female , Phenols/toxicity , Pregnancy , Sheep , Prenatal Exposure Delayed Effects/chemically induced , Prenatal Exposure Delayed Effects/pathology , Islets of Langerhans/drug effects , Islets of Langerhans/metabolism , Islets of Langerhans/pathology , Endocrine Disruptors/toxicity , Insulin-Secreting Cells/drug effects , Insulin-Secreting Cells/metabolism , Insulin-Secreting Cells/pathology , Maternal Exposure/adverse effects , Insulin/metabolism , Fetus/drug effects , Glucagon-Secreting Cells/drug effects , Glucagon-Secreting Cells/metabolism , Glucagon-Secreting Cells/pathology
4.
Endocrinology ; 165(2)2023 Dec 23.
Article in English | MEDLINE | ID: mdl-38060679

ABSTRACT

Gestational hyperandrogenism adversely impacts offspring health. Using an ovine model, we found that prenatal testosterone (T) excess adversely affects growth and cardiometabolic outcomes in female offspring and produces sex-specific effects on fetal myocardium. Since lipids are essential to cardiometabolic function, we hypothesized that prenatal T excess leads to sex-specific disruptions in lipid metabolism at birth. Shotgun lipidomics was performed on the plasma samples collected 48 hours after birth from female (F) and male (M) lambs of control (C) and (T) sheep (CF = 4, TF = 7, CM = 5, TM = 10) and data were analyzed by univariate analysis, multivariate dimensionality reduction modeling followed by functional enrichment, and pathway analyses. Biosynthesis of phosphatidylserine was the major pathway responsible for sex differences in controls. Unsupervised and supervised models showed separation between C and T in both sexes with glycerophospholipids and glycerolipids classes being responsible for the sex differences between C and T. T excess increased cholesterol in females while decreasing phosphatidylcholine levels in male lambs. Specifically, T excess: 1) suppressed the phosphatidylethanolamine N-methyltransferase (PEMT) phosphatidylcholine synthesis pathway overall and in TM lambs as opposed to suppression of carnitine levels overall and TF lambs; and 2) activated biosynthesis of ether-linked (O-)phosphatidylethanolamine and O-phosphatidylcholine from O-diacylglycerol overall and in TF lambs. Higher cholesterol levels could underlie adverse cardiometabolic outcomes in TF lambs, whereas suppressed PEMT pathway in TM lambs could lead to endoplasmic reticulum stress and defective lipid transport. These novel findings point to sex-specific effects of prenatal T excess on lipid metabolism in newborn lambs, a precocial ovine model of translational relevance.


Subject(s)
Cardiovascular Diseases , Hyperandrogenism , Pregnancy , Animals , Sheep , Female , Male , Animals, Newborn , Lipidomics , Testosterone/pharmacology , Phosphatidylcholines , Cholesterol
5.
Front Genet ; 13: 793278, 2022.
Article in English | MEDLINE | ID: mdl-35432478

ABSTRACT

Phthalates are a diverse group of chemicals used in consumer products. Because they are so widespread, exposure to these compounds is nearly unavoidable. Recently, growing scientific consensus has suggested that phthalates produce health effects in developing infants and children. These effects may be mediated through mechanisms related to the epigenome, the constellation of mitotically heritable chemical marks and small compounds that guide transcription and translation. The present study examined the relationship between prenatal, first-trimester exposure of seven phthalates and epigenetics in two pregnancy cohorts (n = 262) to investigate sex-specific alterations in infant blood DNA methylation at birth (cord blood or neonatal blood spots). Prenatal exposure to several phthalates was suggestive of association with altered DNA methylation at 4 loci in males (all related to ΣDEHP) and 4 loci in females (1 related to ΣDiNP; 2 related to BBzP; and 1 related to MCPP) at a cutoff of q < 0.2. Additionally, a subset of dyads (n = 79) was used to interrogate the relationships between two compounds increasingly used as substitutions for common phthalates (ΣDINCH and ΣDEHTP) and cord blood DNA methylation. ΣDINCH, but not ΣDEHTP, was suggestive of association with DNA methylation (q < 0.2). Together, these results demonstrate that prenatal exposure to both classically used phthalate metabolites and their newer alternatives is associated with sex-specific infant DNA methylation. Research and regulatory actions regarding this chemical class should consider the developmental health effects of these compounds and aim to avoid regrettable substitution scenarios in the present and future.

6.
Endocrinology ; 163(1)2022 01 01.
Article in English | MEDLINE | ID: mdl-34718504

ABSTRACT

Prenatal testosterone (T)-treated female sheep manifest peripheral insulin resistance, ectopic lipid accumulation, and insulin signaling disruption in liver and muscle. This study investigated transcriptional changes and transcriptome signature of prenatal T excess-induced hepatic and muscle-specific metabolic disruptions. Genome-wide coding and noncoding (nc) RNA expression in liver and muscle from 21-month-old prenatal T-treated (T propionate 100 mg intramuscular twice weekly from days 30-90 of gestation; term: 147 days) and control females were compared. Prenatal T (1) induced differential expression of messenger RNAs (mRNAs) in liver (15 down, 17 up) and muscle (66 down, 176 up) (false discovery rate < 0.05, absolute log2 fold change > 0.5); (2) downregulated mitochondrial pathway genes in liver and muscle; (3) downregulated hepatic lipid catabolism and peroxisome proliferator-activated receptor (PPAR) signaling gene pathways; (4) modulated noncoding RNA (ncRNA) metabolic processes gene pathway in muscle; and (5) downregulated 5 uncharacterized long noncoding RNA (lncRNA) in the muscle but no ncRNA changes in the liver. Correlation analysis showed downregulation of lncRNAs LOC114112974 and LOC105607806 was associated with decreased TPK1, and LOC114113790 with increased ZNF470 expression. Orthogonal projections to latent structures discriminant analysis identified mRNAs HADHA and SLC25A45, and microRNAs MIR154A, MIR25, and MIR487B in the liver and ARIH1 and ITCH and miRNAs MIR369, MIR10A, and MIR10B in muscle as potential biomarkers of prenatal T excess. These findings suggest downregulation of mitochondria, lipid catabolism, and PPAR signaling genes in the liver and dysregulation of mitochondrial and ncRNA gene pathways in muscle are contributors of lipotoxic and insulin-resistant hepatic and muscle phenotype. Gestational T excess programming of metabolic dysfunctions involve tissue-specific ncRNA-modulated transcriptional changes.


Subject(s)
Gene Expression Regulation, Developmental , Liver/metabolism , Muscles/metabolism , Pregnancy, Animal , RNA, Untranslated , Testosterone/metabolism , Animals , Biomarkers/metabolism , Discriminant Analysis , Female , Hyperandrogenism/metabolism , Insulin/metabolism , Insulin Resistance , Lipids/chemistry , MicroRNAs/metabolism , Mitochondria/metabolism , Pregnancy , Prenatal Exposure Delayed Effects , RNA, Long Noncoding/metabolism , RNA, Messenger/metabolism , Sheep , Signal Transduction , Transcriptome
7.
Mol Cell Endocrinol ; 526: 111207, 2021 04 15.
Article in English | MEDLINE | ID: mdl-33607270

ABSTRACT

Prenatal testosterone (T) excess-induced metabolic dysfunctions involve tissue specific changes in insulin sensitivity with insulin resistant, oxidative and lipotoxic state in liver/muscle and insulin sensitive but inflammatory and oxidative state in visceral adipose tissues (VAT). We hypothesized that mitochondrial dysfunction, endoplasmic reticulum (ER) stress and premature cellular senescence are contributors to the tissue-specific changes in insulin sensitivity. Markers of mitochondrial number, function, and oxidative phosphorylation (OxPhos), ER stress and cellular senescence (telomere length) were assessed in liver, muscle and 4 adipose (VAT, subcutaneous [SAT], epicardiac [ECAT] and perirenal [PRAT]) depots collected from control and prenatal T-treated female sheep at 21 months of age. Prenatal T treatment led to: (a) reduction in mitochondrial number and OxPhos complexes and increase in ER stress markers in muscle; (b) increase in fibrosis with trend towards increase in short telomere fragments in liver (c) depot-specific mitochondrial changes with OxPhos complexes namely increase in SAT and reduction in PRAT and increase in mitochondrial number in ECAT; (d) depot-specific ER stress marker changes with increase in VAT, reduction in SAT, contrasting changes in ECAT and no changes in PRAT; and (d) reduced shorter telomere fragments in SAT, ECAT and PRAT. These changes indicate insulin resistance may be driven by mitochondrial and ER dysfunction in muscle, fibrosis and premature senescence in liver, and depot-specific changes in mitochondrial function and ER stress without involving cellular senescence in adipose tissue. These findings provide mechanistic insights into pathophysiology of metabolic dysfunction among female offspring from hyperandrogenic pregnancies.


Subject(s)
Endoplasmic Reticulum Stress , Mitochondria/metabolism , Organ Specificity , Prenatal Exposure Delayed Effects/pathology , Telomere/metabolism , Testosterone/metabolism , Animals , Biomarkers/metabolism , Collagen/metabolism , Electron Transport , Endoplasmic Reticulum Stress/genetics , Female , Fibrosis , Gene Dosage , Gene Expression Regulation , Liver/pathology , Muscles/pathology , Oxidation-Reduction , Oxidative Phosphorylation , Pregnancy , Prenatal Exposure Delayed Effects/genetics , RNA, Messenger/genetics , RNA, Messenger/metabolism , Sheep
8.
Mol Cell Endocrinol ; 503: 110691, 2020 03 01.
Article in English | MEDLINE | ID: mdl-31863810

ABSTRACT

Prenatal testosterone (T)-treated female sheep exhibit an enhanced inflammatory and oxidative stress state in the visceral adipose tissue (VAT) but not in the subcutaneous (SAT), while surprisingly maintaining insulin sensitivity in both depots. In adult sheep, adipose tissue is predominantly composed of white adipocytes which favor lipid storage. Brown/beige adipocytes that make up the brown adipose tissue (BAT) favor lipid utilization due to thermogenic uncoupled protein 1 expression and are interspersed amidst white adipocytes, more so in epicardiac (ECAT) and perirenal (PRAT) depots. The impact of prenatal T-treatment on ECAT and PRAT depots are unknown. As BAT imparts a metabolically healthy phenotype, the depot-specific impact of prenatal T-treatment on inflammation, oxidative stress, differentiation and insulin sensitivity could be dictated by the distribution of brown adipocytes. This hypothesis was tested by assessing markers of oxidative stress, inflammation, adipocyte differentiation, fibrosis and thermogenesis in adipose depots from control and prenatal T (100  mg T propionate twice a week from days 30-90 of gestation) -treated female sheep at 21 months of age. Our results show prenatal T-treatment induces depot-specific changes in inflammation, oxidative stress state, collagen accumulation, and differentiation with changes being more pronounced in the VAT. Prenatal T-treatment also increased thermogenic gene expression in all depots indicative of increased browning with effects being more prominent in VAT and SAT. Considering that inflammatory and oxidative stress are also elevated, the increased brown adipocyte distribution is likely a compensatory response to maintain insulin sensitivity and function of organs in the proximity of respective depots.


Subject(s)
Adipose Tissue, Brown/drug effects , Body Fat Distribution , Prenatal Exposure Delayed Effects , Testosterone/pharmacology , Adipocytes, Brown/cytology , Adipocytes, Brown/drug effects , Adipocytes, Brown/metabolism , Adipocytes, White/drug effects , Adipocytes, White/physiology , Adipogenesis/drug effects , Adipogenesis/physiology , Adipose Tissue/drug effects , Adipose Tissue/metabolism , Adipose Tissue, Brown/metabolism , Animals , Body Fat Distribution/veterinary , Embryonic Development/drug effects , Embryonic Development/physiology , Female , Inflammation/chemically induced , Inflammation/metabolism , Inflammation/pathology , Insulin Resistance/physiology , Intra-Abdominal Fat/drug effects , Intra-Abdominal Fat/physiology , Organ Specificity/genetics , Oxidative Stress/drug effects , Oxidative Stress/physiology , Pregnancy , Prenatal Exposure Delayed Effects/chemically induced , Prenatal Exposure Delayed Effects/metabolism , Sheep , Thermogenesis/drug effects , Thermogenesis/physiology
9.
Endocrinology ; 160(11): 2663-2672, 2019 11 01.
Article in English | MEDLINE | ID: mdl-31436841

ABSTRACT

Polycystic ovary syndrome (PCOS) is a common condition of reproductive-aged women. In a well-validated sheep model of PCOS, testosterone (T) treatment of pregnant ewes culminated in placental insufficiency and intrauterine growth restriction of offspring. The purpose of this study was to explore specific mechanisms by which T excess compromises placental function in early, mid, and late gestation. Pregnant Suffolk sheep received T propionate 100 mg intramuscularly or control vehicle twice weekly from gestational days (GD) 30 to 90 (term = 147 days). Placental harvest occurred at GD 65, 90, and 140. Real-time RT-PCR was used to assess transcript levels of proinflammatory (TNF, IL1B, IL6, IL8, monocyte chemoattractant protein-1/chemokine ligand 2, cluster of differentiation 68), antioxidant (glutathione reductase and superoxide dismutase 1 and 2), and angiogenic [vascular endothelial growth factor (VEGF) and hypoxia-inducible factor 1α (HIF1A)] genes. Lipid accumulation was assessed using triglyceride assays and Oil Red O staining. Placental measures of oxidative and nitrative stress included the thiobarbituric acid reactive substance assay and high-pressure liquid chromatography. Tissue fibrosis was assessed with Picrosirius Red staining. Student t tests and Cohen effect-size analyses were used for statistical analysis. At GD 65, T-treated placentomes showed increased lipid accumulation and collagen deposition. Notable findings at GD 90 were a significant increase in HIF1A expression and a large effect increase in VEGF expression. At GD 140, T-treated placentomes displayed large effect increases in expression of hypoxia and inflammatory markers. In summary, T treatment during early pregnancy induces distinct gestational age-specific effects on the placental milieu, which may underlie the previously observed phenotype of placental insufficiency.


Subject(s)
Placenta/physiopathology , Polycystic Ovary Syndrome/physiopathology , Animals , Disease Models, Animal , Female , Placenta/metabolism , Polycystic Ovary Syndrome/metabolism , Pregnancy , Prenatal Exposure Delayed Effects , Sheep , Testosterone
SELECTION OF CITATIONS
SEARCH DETAIL
...