ABSTRACT
The diagnosis of attention-deficit hyperactivity disorder (ADHD) is based on the health history and on the evaluation of questionnaires to identify symptoms. This evaluation can be subjective and lengthy, especially in children. Therefore, a biomarker would be of great value to assist mental health professionals in the process of diagnosing ADHD. Event-related potential (ERP) is one of the most informative and dynamic methods of monitoring cognitive processes. Previous works suggested that specific sets of ERP-microstates are selectively affected by ADHD. This paper proposes a new methodology for the ERP-microstate analysis and identification of ADHD patients based on complex networks to model the microstate topographic maps. The analysis of global and local features of ERP-microstate networks revealed topological differences between ADHD and healthy control. The classification using a neural network with a single hidden layer resulted in an average accuracy of 99.72% in binary classification and 99.31% in the classification of ADHD subtypes. The results were compared to the power band spectral densities and the energy of wavelet coefficients. The temporal features of ERP-microstates, such as frequency of occurrence, duration, coverage, and transition probabilities, were also evaluated for comparison proposes. Overall, the selected topological features of ERP-microstate networks derived from the proposed method performed significantly better classification results. The results suggest that topological features of ERP-microstate networks are promising to identify ADHD and its subtypes with a neural network model compared to power band spectrum density, wavelet transform, and temporal features of ERP-microstates.
Subject(s)
Attention Deficit Disorder with Hyperactivity , Brain , Child , Humans , Electroencephalography , Attention Deficit Disorder with Hyperactivity/diagnosis , Evoked Potentials , Wavelet AnalysisABSTRACT
This work proposes a new approach to improve swarm intelligence algorithms for dynamic optimization problems by promoting a balance between the transfer of knowledge and the diversity of particles. The proposed method was designed to be applied to the problem of video tracking targets in environments with almost constant lighting. This approach also delimits the solution space for a more efficient search. A robust version to outliers of the double exponential smoothing (DES) model is used to predict the target position in the frame delimiting the solution space in a more promising region for target tracking. To assess the quality of the proposed approach, an appropriate tracker for a discrete solution space was implemented using the meta-heuristic Shuffled Frog Leaping Algorithm (SFLA) adapted to dynamic optimization problems, named the Dynamic Shuffled Frog Leaping Algorithm (DSFLA). The DSFLA was compared with other classic and current trackers whose algorithms are based on swarm intelligence. The trackers were compared in terms of the average processing time per frame and the area under curve of the success rate per Pascal metric. For the experiment, we used a random sample of videos obtained from the public Hanyang visual tracker benchmark. The experimental results suggest that the DSFLA has an efficient processing time and higher quality of tracking compared with the other competing trackers analyzed in this work. The success rate of the DSFLA tracker is about 7.2 to 76.6% higher on average when comparing the success rate of its competitors. The average processing time per frame is about at least 10% faster than competing trackers, except one that was about 26% faster than the DSFLA tracker. The results also show that the predictions of the robust DES model are quite accurate.
ABSTRACT
Texture segmentation is a challenging problem in computer vision due to the subjective nature of textures, the variability in which they occur in images, their dependence on scale and illumination variation, and the lack of a precise definition in the literature. This paper proposes a method to segment textures through a binary pixel-wise classification, thereby without the need for a predefined number of textures classes. Using a convolutional neural network, with an encoder-decoder architecture, each pixel is classified as being inside an internal texture region or in a border between two different textures. The network is trained using the Prague Texture Segmentation Datagenerator and Benchmark and tested using the same dataset, besides the Brodatz textures dataset, and the Describable Texture Dataset. The method is also evaluated on the separation of regions in images from different applications, namely remote sensing images and H&E-stained tissue images. It is shown that the method has a good performance on different test sets, can precisely identify borders between texture regions and does not suffer from over-segmentation.
ABSTRACT
This paper proposes a technique, called Evolving Probabilistic Neural Network (ePNN), that presents many interesting features, including incremental learning, evolving architecture, the capacity to learn continually throughout its existence and requiring that each training sample be used only once in the training phase without reprocessing. A series of experiments was performed on data sets in the public domain; the results indicate that ePNN is superior or equal to the other incremental neural networks evaluated in this paper. These results also demonstrate the advantage of the small ePNN architecture and show that its architecture is more stable than the other incremental neural networks evaluated. ePNN thus appears to be a promising alternative for a quick learning system and a fast classifier with a low computational cost.