Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Transl Psychiatry ; 6: e748, 2016 Mar 01.
Article in English | MEDLINE | ID: mdl-26926884

ABSTRACT

An extensive literature links circadian irregularities and/or sleep abnormalities to mood disorders. Despite the strong genetic component underlying many mood disorders, however, previous genetic associations between circadian clock gene variants and major depressive disorder (MDD) have been weak. We applied a combined molecular/functional and genetic association approach to circadian gene polymorphisms in sex-stratified populations of control subjects and case subjects suffering from MDD. This approach identified significant sex-dependent associations of common variants of the circadian clock genes hClock, hPer3 and hNpas2 with major depression and demonstrated functional effects of these polymorphisms on the expression or activity of the hCLOCK and hPER3 proteins, respectively. In addition, hCLOCK expression is affected by glucocorticoids, consistent with the sex-dependency of the genetic associations and the modulation of glucocorticoid-mediated stress response, providing a mechanism by which the circadian clock controls outputs that may affect psychiatric disorders. We conclude that genetic polymorphisms in circadian genes (especially hClock and hPer3, where functional assays could be tested) influence risk of developing depression in a sex- and stress-dependent manner. These studies support a genetic connection between circadian disruption and mood disorders, and confirm a key connection between circadian gene variation and major depression.


Subject(s)
Circadian Clocks/physiology , Circadian Rhythm/physiology , Depressive Disorder, Major/physiopathology , Genetic Variation/physiology , Circadian Clocks/genetics , Circadian Rhythm/genetics , Depressive Disorder, Major/genetics , Female , Genetic Variation/genetics , Humans , Male , Sex Factors
2.
Neuroscience ; 197: 8-16, 2011 Dec 01.
Article in English | MEDLINE | ID: mdl-21963350

ABSTRACT

The serotonin and circadian systems are principal regulatory networks of the brain. Each consists of a unique set of neurons that make widespread neural connections and a defined gene network of transcriptional regulators and signaling genes that subserve serotonergic and circadian function at the genetic level. These master regulatory networks of the brain are extensively intertwined, with reciprocal circuit connections, expression of key genetic elements for serotonin signaling in clock neurons and expression of key clock genes in serotonergic neurons. The reciprocal connections of the serotonin and circadian systems likely have importance for neurobehavioral disorders, as suggested by their convergent contribution to a similar range of mood disorders including seasonal affective disorder (SAD), bipolar disorder, and major depression, and as suggested by their overlapping relationship with the developmental disorder, autism spectrum disorder. Here we review the neuroanatomical and genetic basis for serotonin-circadian interactions in the brain, their potential relationship with neurobehavioral disorders, and recent work examining the effects on the circadian system of genetic perturbation of the serotonergic system as well as the molecular and behavioral effects of developmental imprinting of the circadian system with perinatal seasonal light cycles.


Subject(s)
Brain/physiology , Circadian Rhythm/physiology , Mood Disorders/physiopathology , Serotonin/metabolism , Animals , Humans , Photoperiod
SELECTION OF CITATIONS
SEARCH DETAIL
...