Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
Chemistry ; 28(26): e202200462, 2022 May 06.
Article in English | MEDLINE | ID: mdl-35234313

ABSTRACT

A radical anion -NO2 .- is formed upon an electrochemically reversible one-electron reduction of the square-planar NiII complex of N-nitrobenzylcyclam. The -NO2 .- group goes to occupy an axial position of the metal ion, thus establishing a significant electronic interaction with the metal center. In particular, the ESR spectrum supports the occurrence of an electron transfer from -NO2 .- to the metal, which therefore presents a significant NiI character. On re-oxidation, the nitrobenzyl side chain detaches and the NiII complex is restored, providing an example of a fully reversible redox driven intramolecular motion.

2.
Molecules ; 27(6)2022 Mar 12.
Article in English | MEDLINE | ID: mdl-35335216

ABSTRACT

Copper(II) azacyclam complexes (azacyclam = 1,3,5,8,12-pentaazacyclotetradecane) containing naphthyl or dansyl subunits can be prepared by template synthesis involving proper sulfonamide derivatives as locking fragments. The macrocyclic complexes are very poorly emissive due to the fluorescence-quenching behavior displayed by Cu2+ ions. However, the fluorescence can be recovered as a result of the decomposition of the complexes, which induces the release of free light-emitting subunits to the solution. This reaction takes place very slowly in neutral water but its rate is increased by the presence of sulfite. Therefore, [Cu(azacyclam)]2+ derivatives have been investigated as simple chemical probes for the fluorogenic detection of sulfite both on laboratory and real samples. Preliminary tests performed on samples of white wine provided sulfite concentration values that are in agreement with those obtained by a standard analytical method.


Subject(s)
Copper , Water , Copper/chemistry , Spectrometry, Fluorescence/methods , Sulfites , Water/chemistry
3.
Chemphyschem ; 21(21): 2432-2440, 2020 11 03.
Article in English | MEDLINE | ID: mdl-32893936

ABSTRACT

Two novel phenothiazin-5-ium derivatives bearing cyclam moieties (3 a+ and 3 b+ ) were synthesized and investigated as Cu2+ sensors. Both ligands show intense spectral changes in the presence of Cu2+ in aqueous solutions. The high molar extinction coefficient of the chromophore allows both naked eye detection and spectrophotometric quantitative determination of the cation at a micromolar-concentration scale. 3 a+ was found to outperform 3 b+ , showing negligible spectral changes in the presence of excesses of other metal cations.

4.
Front Chem ; 8: 35, 2020.
Article in English | MEDLINE | ID: mdl-32083055

ABSTRACT

Nanocrystals of Cs2SnX6 (X = Cl, Br, Br0.5I0.5, and I) have been prepared by a simple, optimized, hot-injection method, reporting for the first time the synthesis of Cs2SnCl6, Cs2SnBr6, and mixed Cs2Sn(I0.5Br0.5)6 nanocrystalline samples. They all show a cubic crystal structure with a linear scaling of lattice parameter by changing the halide size. The prepared nanocrystals have spherical shape with average size from 3 to 6 nm depending on the nature of the halide and span an emission range from 444 nm (Cs2SnCl6) to 790 nm (Cs2SnI6) with a further modulation provided by mixed Br/I systems.

5.
Chemistry ; 24(21): 5659-5666, 2018 Apr 11.
Article in English | MEDLINE | ID: mdl-29430751

ABSTRACT

The dimetallic system [CuII2 (L)]4+ contains two facing equivalent metallocyclam subunits and incorporates ambidentate anions, mono- (halides) and poly-atomic (sulfate), which bridge the two CuII centres. Isothermal titration calorimetry (ITC) experiments in water showed that the log K values of the inclusion equilibria for halides and sulfate varied over a restricted interval (3.6±0.2), which indicated lack of selectivity and that similarity of ΔG° values resulted from the unbalanced contribution of the ΔH° and TΔS° terms: the more favourable the one, the less favourable the other. In particular, a linear dependence of ΔH° and TΔS° was observed (a typical enthalpy/entropy compensatory diagram), which assigned a major role to hydration terms: 1) a more hydrated anion resulted in a more endothermic dehydration process; and 2) a larger number of water molecules released to the solution resulted in a more positive TΔS°. Limiting cases refer to the complexation 1) of the poorly hydrated iodide (highly exothermic process, entropically disfavoured), and 2) of the highly hydrated sulfate (moderately endothermic process, entropically very favoured). Anion receptors operating in water belong to two main domains: 1) those exhibiting positive ΔH° and positive TΔS° (+/+ signature), and 2) those displaying the opposite behaviour: (-/- signature). The receptor investigated herein connects the two domains, along the ΔH°/TΔS° straight line, thanks to the hidden role of the versatile metal-anion interaction.

6.
ACS Omega ; 3(11): 15692-15701, 2018 Nov 30.
Article in English | MEDLINE | ID: mdl-31458223

ABSTRACT

The dicopper(II) complex of the bimacrocyclic ligand α,α'-bis(5,7-dimethyl-1,4,8,11-tetraazacyclotetradecan-6-yl)-o-xylene, 2, interacts with selected anions in dimethyl sulfoxide solution according to two different modes: (i) halides (Cl-, Br-, and I-) and N3 - coordinate the two metal centers at the same time between the two macrocyclic subunits that face each other and (ii) anionic species that do not fit the bridging coordination mode (e.g., NCO-, SCN-, CH3COO-, NO3 -, and H2PO4 -) interact with copper(II) ions only at the "external" positions or their interaction is too weak to be detected. Occurrence of the bridging interaction is demonstrated by X-ray crystallographic studies performed on the adduct formed by [Cu2(2)]4+ with azide and by electron paramagnetic resonance investigation, as the anion coordination between the two copper(II) centers induces spin-spin coupling. Isothermal titration calorimetry experiments performed on [Cu2(2)]4+ and, for comparison, on [(5,7-dimethyl-6-benzyl-1,4,8,11-tetraazacyclotetradecane)copper(II)], representing the mononuclear analogue, allowed determination of thermodynamic parameters (log K, ΔH, and TΔS) associated with the considered complex/anion equilibria. Thermodynamic data showed that adducts formed by [Cu2(2)]4+ with halides and azide benefit from an extra stability that can be explained on the basis of the anion advantage of simultaneously binding the two metal centers, i.e., in terms of the bimacrocyclic effect.

7.
Inorg Chem ; 54(21): 10197-207, 2015 Nov 02.
Article in English | MEDLINE | ID: mdl-26468764

ABSTRACT

The three nitrophenyl-cyclam derivatives (nitrocyclams): 1-(4-nitrophenyl)-1,4,8,11-tetraazacyclotetradecane (2), 1-(2-nitrophenyl)-1,4,8,11-tetraazacyclotetradecane (3), and 1-(2,4-dinitrophenyl)-1,4,8,11-tetraazacyclotetradecane (4), in an MeCN solution, specifically incorporate the Cu(II) ion according to an irreversible process signaled by disappearance of the yellow color for a concentration c < 1 × 10(-4) M and by a yellow-to-red color change for c ≥ 1 × 10(-3), and must be considered efficient and specific dosimeters of copper(II) salts. When present in the ortho position of the nitrophenyl substituent, the -NO2 group coordinates the Cu(II) according to a scorpionate mode, while the metallocyclam system exhibits a trans-I configuration. In an MeCN solution the red trans-I-[Cu(II)(3)](2+) and trans-I-[Cu(II)(4)](2+) scorpionate complexes slowly convert into the violet trans-III scorpionate complexes. Kinetic aspects of the trans-I-to-trans-III configurational rearrangement were investigated in detail for the [Cu(II)(4)](2+) system. In particular, the conversion is spectacularly accelerated by catalytic amounts of Cl(-), NCO(-), and F(-). While for Cl(-) and NCO(-) the effect can be associated with the capability of the anion to stabilize through coordination a possible dissociative intermediate, the amazingly powerful effect of F(-) must be related to the preliminary deprotonation of one N-H fragment of the macrocycle, driven by the formation of the HF2(-) ion. Most of the metal complex species studied in solution were isolated in a crystalline form, and their molecular structures were elucidated through X-ray diffraction studies. This study documents the first examples of effective metal coordination by the nitro group.

8.
Inorg Chem ; 52(18): 10643-52, 2013 Sep 16.
Article in English | MEDLINE | ID: mdl-24003965

ABSTRACT

The bis-bidentate ligand, obtained from Schiff base condensation of RR-1,2-cyclohexanediamine and 8-naphthylmethoxyquinoline-2-carbaldehyde (L-L), forms with [Cu(I)(MeCN)4]ClO4 a double strand helicate complex, made especially stable by the presence of four definite interstrand π-π interactions involving a quinoline subunit and a naphthylmethoxy substituent of the two strands. The [Cu(I)2(L-L)2](2+) complex, which does not decompose even on excess addition of either L-L or Cu(I), undergoes a two electron oxidation in MeCN, through two one-electron fully reversible steps, separated by 260 mV, as shown by cyclic voltammetry (CV) studies. The high stability of the mixed valence complex [Cu(I)Cu(II)(L-L)2](3+) with respect to disproportionation to [Cu(I)2(L-L)2](2+) and [Cu(II)2(L-L)2](4+) is essentially due to a favorable electrostatic term. Cu(II) forms with L-L a stable species, with a 1:1 stoichiometric ratio, but, in the absence of crystallographic data, it was impossible to assess whether it is of mono- or dinuclear nature. However, CV studies on an MeCN solution containing equimolar amounts of Cu(II) and L-L showed the presence in the reduction scan of two fully reversible waves, separated by about 250 mV, which indicated the presence in solution of a dicopper(II) double strand helicate complex, [Cu(II)2(L-L)2](4+). This work demonstrates that additional interstrand π-π interactions can favor the formation of unusually stable dicopper(I) and dicopper(II) helicate complexes.

9.
Inorg Chem ; 52(9): 5273-83, 2013 May 06.
Article in English | MEDLINE | ID: mdl-23578309

ABSTRACT

Covalent linking of a Ru(terpy)2(2+) substituent improves recognition and sensing properties of the urea subunit toward anions. Urea's anion affinity is enhanced by the electrostatic attraction exerted by the Ru(II) cation and by the electron-withdrawing effect exerted by the entire polypyridine-metal complex. Such an enhancement of the anion affinity, which results from the combination of a through-space and a through-bond effect, is greater than that exerted by the classical neutral electron-withdrawing substituent nitrophenyl. Small yet significant modifications of π-π* and MLCT bands of the Ru(terpy)2(2+) chromophore, detected through UV-vis spectrophotometric titrations, allowed the determination of the constants for the formation of receptor-anion H-bond complexes in diluted MeCN solution. On (1)H NMR titration experiments, carried out under more concentrated conditions, the interaction of a second Cl(-) ion was observed, taking place through an outer-sphere mechanism. The Ru(terpy)2(2+) substituent favors the deprotonation of a urea N-H fragment on addition of a second equivalent of fluoride, with formation of HF2(-).

SELECTION OF CITATIONS
SEARCH DETAIL
...