Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Proc Natl Acad Sci U S A ; 121(14): e2400868121, 2024 Apr 02.
Article in English | MEDLINE | ID: mdl-38547066

ABSTRACT

Partial cystectomy procedures for urinary bladder-related dysfunction involve long recovery periods, during which urodynamic studies (UDS) intermittently assess lower urinary tract function. However, UDS are not patient-friendly, they exhibit user-to-user variability, and they amount to snapshots in time, limiting the ability to collect continuous, longitudinal data. These procedures also pose the risk of catheter-associated urinary tract infections, which can progress to ascending pyelonephritis due to prolonged lower tract manipulation in high-risk patients. Here, we introduce a fully bladder-implantable platform that allows for continuous, real-time measurements of changes in mechanical strain associated with bladder filling and emptying via wireless telemetry, including a wireless bioresorbable strain gauge validated in a benchtop partial cystectomy model. We demonstrate that this system can reproducibly measure real-time changes in a rodent model up to 30 d postimplantation with minimal foreign body response. Studies in a nonhuman primate partial cystectomy model demonstrate concordance of pressure measurements up to 8 wk compared with traditional UDS. These results suggest that our system can be used as a suitable alternative to UDS for long-term postoperative bladder recovery monitoring.


Subject(s)
Urinary Bladder , Urinary Tract Infections , Animals , Humans , Urinary Bladder/surgery , Urodynamics/physiology , Prostheses and Implants , Cystectomy
2.
Nat Biomed Eng ; 2024 Mar 18.
Article in English | MEDLINE | ID: mdl-38499643

ABSTRACT

Diagnosing and monitoring inflammatory bowel diseases, such as Crohn's disease, involves the use of endoscopic imaging, biopsies and serology. These infrequent tests cannot, however, identify sudden onsets and severe flare-ups to facilitate early intervention. Hence, about 70% of patients with Crohn's disease require surgical intestinal resections in their lifetime. Here we report wireless, miniaturized and implantable temperature sensors for the real-time chronic monitoring of disease progression, which we tested for nearly 4 months in a mouse model of Crohn's-disease-like ileitis. Local measurements of intestinal temperature via intraperitoneally implanted sensors held in place against abdominal muscular tissue via two sutures showed the development of ultradian rhythms at approximately 5 weeks before the visual emergence of inflammatory skip lesions. The ultradian rhythms showed correlations with variations in the concentrations of stress hormones and inflammatory cytokines in blood. Decreasing average temperatures over the span of approximately 23 weeks were accompanied by an increasing percentage of inflammatory species in ileal lesions. These miniaturized temperature sensors may aid the early treatment of inflammatory bowel diseases upon the detection of episodic flare-ups.

3.
Science ; 383(6687): 1096-1103, 2024 Mar 08.
Article in English | MEDLINE | ID: mdl-38452063

ABSTRACT

Monitoring homeostasis is an essential aspect of obtaining pathophysiological insights for treating patients. Accurate, timely assessments of homeostatic dysregulation in deep tissues typically require expensive imaging techniques or invasive biopsies. We introduce a bioresorbable shape-adaptive materials structure that enables real-time monitoring of deep-tissue homeostasis using conventional ultrasound instruments. Collections of small bioresorbable metal disks distributed within thin, pH-responsive hydrogels, deployed by surgical implantation or syringe injection, allow ultrasound-based measurements of spatiotemporal changes in pH for early assessments of anastomotic leaks after gastrointestinal surgeries, and their bioresorption after a recovery period eliminates the need for surgical extraction. Demonstrations in small and large animal models illustrate capabilities in monitoring leakage from the small intestine, the stomach, and the pancreas.


Subject(s)
Absorbable Implants , Anastomotic Leak , Gastrointestinal Tract , Ultrasonics , Animals , Humans , Homeostasis , Stomach , Gastrointestinal Tract/surgery , Anastomotic Leak/diagnostic imaging , Models, Animal
4.
Adv Healthc Mater ; 10(17): e2100383, 2021 09.
Article in English | MEDLINE | ID: mdl-33938638

ABSTRACT

Indwelling arterial lines, the clinical gold standard for continuous blood pressure (BP) monitoring in the pediatric intensive care unit (PICU), have significant drawbacks due to their invasive nature, ischemic risk, and impediment to natural body movement. A noninvasive, wireless, and accurate alternative would greatly improve the quality of patient care. Recently introduced classes of wireless, skin-interfaced devices offer capabilities in continuous, precise monitoring of physiologic waveforms and vital signs in pediatric and neonatal patients, but have not yet been employed for continuous tracking of systolic and diastolic BP-critical for guiding clinical decision-making in the PICU. The results presented here focus on materials and mechanics that optimize the system-level properties of these devices to enhance their reliable use in this context, achieving full compatibility with the range of body sizes, skin types, and sterilization schemes typically encountered in the PICU. Systematic analysis of the data from these devices on 23 pediatric patients, yields derived, noninvasive BP values that can be quantitatively validated against direct recordings from arterial lines. The results from this diverse cohort, including those under pharmacological protocols, suggest that wireless, skin-interfaced devices can, in certain circumstances of practical utility, accurately and continuously monitor BP in the PICU patient population.


Subject(s)
Critical Care , Vital Signs , Blood Pressure , Child , Humans , Infant, Newborn , Monitoring, Physiologic , Skin
5.
Chem Commun (Camb) ; 54(56): 7790-7793, 2018 Jul 10.
Article in English | MEDLINE | ID: mdl-29943782

ABSTRACT

Modular but geometrically constrained ligands were used to investigate the impact of key ligand design parameters (charge and bite angle) on CO2 hydrogenation and formic acid dehydrogenation activity. These studies yielded an optimized catalyst that achieved over 118 000 turnovers in CO2 hydrogenation, 247 000 turnovers in HCO2H dehydrogenation, was applied in a hydrogen storage device used for 6 cycles of hydrogen storage/release without requiring changes in pH or solvent, and generated H2/CO2 gas at a pressure of 190 atm from formic acid.

SELECTION OF CITATIONS
SEARCH DETAIL
...