Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 13 de 13
Filter
Add more filters










Publication year range
1.
Microorganisms ; 11(9)2023 Aug 30.
Article in English | MEDLINE | ID: mdl-37764040

ABSTRACT

Within the framework of the Interreg Italy-Slovenia programme, the project DuraSoft aimed at testing innovative technologies to improve the durability of traditional wooden structures in socio-ecologically sensitive environments. We focused on the impact of different wood treatments (i.e., copper-based coatings and thermal modification) on microbial biofilm formation in the Grado Lagoon. Wooden samples were placed in 2 areas with diverse hydrodynamic conditions and retrieved after 6, 20, and 40 days. Light, confocal and scanning electron microscopy were employed to assess the treatment effects on the microalgal community abundance and composition. Lower hydrodynamics accelerated the colonisation, leading to higher algal biofilm abundances, regardless of the treatment. The Cu-based agents induced modifications to the microalgal community, leading to lower densities, small-sized diatoms and frequent deformities (e.g., bent apices, frustule malformation) in the genera Cylindrotheca and Cocconeis. After 20 days, taxa forming 3D mucilaginous structures, such as Licmophora and Synedra, were present on chemically treated panels compared to natural ones. While in the short term, the treatments were effective as antifouling agents, in the long term, neither the copper-based coatings nor the thermal modification successfully slowed down the biofouling colonisation, likely due to the stimulating effect of nutrients and other substances released from these solutions. The need to develop more ecosystem friendly technologies to preserve wooden structures remains urgent.

2.
Microorganisms ; 11(4)2023 Apr 03.
Article in English | MEDLINE | ID: mdl-37110359

ABSTRACT

MOSE is a system of mobile gates engineered to temporarily isolate the Venice Lagoon from the Adriatic Sea and to protect the city from flooding during extreme high tides. Within the framework of the Venezia2021 program, we conducted two enclosure experiments in July 2019 (over 48 h) and October 2020 (over 28 h) by means of 18 mesocosms, in order to simulate the structural alterations that microphytobenthos (MPB) assemblages might encounter when the MOSE system is operational. The reduced hydrodynamics inside the mesocosms favored the deposition of organic matter and the sinking of cells from the water column towards the sediment. Consequently, MPB abundances increased over the course of both experiments and significant changes in the taxonomic composition of the community were recorded. Species richness increased in summer while it slightly decreased in autumn, this latter due to the increase in relative abundances of taxa favored by high organic loads and fine grain size. By coupling classical taxonomy with 18S rRNA gene metabarcoding we were able to obtain a comprehensive view of the whole community potential, highlighting the complementarity of these two approaches in ecological studies. Changes in the structure of MPB could affect sediment biostabilization, water turbidity and lagoon primary production.

3.
Environ Pollut ; 323: 121022, 2023 Apr 15.
Article in English | MEDLINE | ID: mdl-36621717

ABSTRACT

We investigated the structural and functional changes of the soft-bottom macrofaunal community following the improvement of a wastewater treatment-WWT plant. The macrofauna was collected at increasing distance from the main outfall in 2018, 2019, and 2021. Organic matter and nutrients were analysed in the water column near the outfalls to detect possible changes due to the improved treatment. We examined Functional Entities-FEs (i.e. a unique combination of species functional traits), species richness, Shannon-Wiener diversity-H', and taxonomic and functional ß-diversity. From 2018 (before the year of the treatment change), to 2021, we noted a gradual decrease of organic carbon in the water column. In contrast, sediment characteristics (i.e. grain-size) did not change before and after treatment enhancement, with the exception of redox potential. Species richness and FEs gradually increased moving far from the source of organic contamination and after wastewater treatment enhancement, especially near the outfall. We observed different phases of macrofaunal succession stage after the WWT amelioration. A 'normal stage', i.e. slightly lower species richness, was reflected in decreasing functional richness. Higher taxonomic ß-diversity values with significant turnover components indicated that the community was subjected to broad changes in species composition. However, functional ß-diversity did not follow the same pattern. After treatment improvement, modified environmental conditions led to the establishment of new species, but with the same functions. Towards 2021, the community improved its resilience by increasing functional redundancy and reduction of vulnerability, which enhanced community stability. The latter was also reflected in the well-balanced proportion of macrofaunal feeding habits after the WWT upgrade. Integrating the classical taxonomic approach with the analysis of FEs, and environmental characteristics can provide an accurate insight into macrofauna sensitivity to stressors that are likely to lead to changes in the ecological state of an area.


Subject(s)
Sewage , Water , Carbon , Biodiversity , Ecosystem
4.
Data Brief ; 19: 586-593, 2018 Aug.
Article in English | MEDLINE | ID: mdl-29900358

ABSTRACT

Biological, hydrological and chemical data were acquired at monthly intervals from March 2006 to February 2007, at the Long-Term Ecological Research site C1 in the Gulf of Trieste, in the northernmost part of the Adriatic Sea. The biological dataset comprises total chl a and phaeopigment concentrations, and the distinction of the total phytoplankton biomass into three photoautotrophic community fractions, i.e. cyanobacteria, nano- and microphytoplankton, collected at discrete depths. Hydrological data encompass the thermohaline properties of the water column (temperature and salinity profiles from CTD casts). Chemical data consist of silicate and phosphate concentrations obtained from discrete seawater samples collected with Niskin bottles at four depths (0.5-5-10-15 m). Data presented here are related to the paper "Structural and functional response of phytoplankton to reduced river inputs and anomalous physical-chemical conditions in the Gulf of Trieste (northern Adriatic Sea) by Cibic et al. (2018) [1].

5.
Sci Total Environ ; 636: 838-853, 2018 Sep 15.
Article in English | MEDLINE | ID: mdl-29727850

ABSTRACT

We studied the influence of anomalous meteorological and hydrological conditions that occurred in the Gulf of Trieste from March 2006 to February 2007 on phytoplankton structure and function. We computed monthly mean (or median) air temperature, total precipitation, wind speed, river discharge, seawater temperature, salinity, photosynthetic available radiation (PAR), cyanobacteria, nano- and microphytoplankton abundances during the study year and compared them to climatological (1999-2014 for PAR; 1999-2007 for nanophytoplankton; 1998-2015 for the other variables) mean/median data. We then related the cyanobacteria (0.2-2 µm), nano- (2-20 µm) and microphytoplankton (20-200 µm) of the study year to inorganic nutrient concentrations. Median river inputs in October and November were 9- and 15-fold lower, respectively, than the time series medians, with consequent high salinity from May to November (up to +1.26 compared to the climatological data). Monthly mean seawater temperatures were lower than the climatological values (-2.95 °C at the surface) from March to August 2006 and higher (+2.15 °C at the surface) from September to February 2007. Reductions in freshwater input and nutrient depletion were likely responsible for a decrease in microphytoplankton (median annual abundance over 60% lower than the climatologic median) and cyanobacteria (up to 47% lower than the climatology). Significant seasonal differences in cyanobacteria and microphytoplankton abundances (RANOSIM = 0.52; p < 0.05), as well as in seawater temperature and salinity (RANOSIM = 0.73; p < 0.05) between the study period and the climatology were highlighted. The late spring diatom bloom was not reflected in high photosynthetic rates whereas an unusually high primary production was estimated in November (7.11 ±â€¯1.01 µgC L-1 h-1), when a mucilage event occurred due to very stable atmospheric and oceanographic conditions. The typical seasonal succession of pelagic phototrophs (micro-, nanophytoplankton and cyanobacteria) was altered since an exceptional cyanobacteria bloom first developed in April, followed by a delayed diatom bloom in May.


Subject(s)
Environmental Monitoring , Phytoplankton/physiology , Cyanobacteria , Italy , Rivers/chemistry , Seasons , Seawater/chemistry
6.
Sci Adv ; 4(2): eaao2040, 2018 02.
Article in English | MEDLINE | ID: mdl-29441359

ABSTRACT

Subseabed CO2 storage is considered a future climate change mitigation technology. We investigated the ecological consequences of CO2 leakage for a marine benthic ecosystem. For the first time with a multidisciplinary integrated study, we tested hypotheses derived from a meta-analysis of previous experimental and in situ high-CO2 impact studies. For this, we compared ecological functions of naturally CO2-vented seafloor off the Mediterranean island Panarea (Tyrrhenian Sea, Italy) to those of nonvented sands, with a focus on biogeochemical processes and microbial and faunal community composition. High CO2 fluxes (up to 4 to 7 mol CO2 m-2 hour-1) dissolved all sedimentary carbonate, and comigration of silicate and iron led to local increases of microphytobenthos productivity (+450%) and standing stocks (+300%). Despite the higher food availability, faunal biomass (-80%) and trophic diversity were substantially lower compared to those at the reference site. Bacterial communities were also structurally and functionally affected, most notably in the composition of heterotrophs and microbial sulfate reduction rates (-90%). The observed ecological effects of CO2 leakage on submarine sands were reproduced with medium-term transplant experiments. This study assesses indicators of environmental impact by CO2 leakage and finds that community compositions and important ecological functions are permanently altered under high CO2.


Subject(s)
Carbon Dioxide/chemistry , Ecosystem , Geologic Sediments/chemistry , Animals , Bacteria/metabolism , Food Chain , Invertebrates/physiology , Italy , Oxygen/analysis , Porosity , Water/chemistry
7.
Mar Environ Res ; 118: 31-44, 2016 Jul.
Article in English | MEDLINE | ID: mdl-27155353

ABSTRACT

Sediment samplings were performed to investigate the microphytobenthic community and photosynthetic activity adaptations to gas emissions and higher temperature in the Aeolian Islands during a three-year period (2012-2014). Higher microphytobenthic densities were recorded at the vent stations and values were even more pronounced in relation with high temperature. The gross primary production estimates strongly depended on microphytobenthic abundance values reaching up to 45.79 ± 6.14 mgC m(-2) h(-1). High abundances were coupled with low community richness and diversity. Motile diatom living forms were predominant at all stations and the greatest differences among vent and reference stations were detected on the account of the tychopelagic forms. Morphological deformities and heavily silicified diatom frustules were also observed. A significant influence of the gas emission and high temperature on the phototrophic community was highlighted suggesting the Aeolian Islands as a good natural laboratory for studies on high CO2 and global warming effects.


Subject(s)
Biodiversity , Hydrothermal Vents , Invertebrates/classification , Animals , Ecosystem , Environmental Monitoring , Invertebrates/growth & development , Italy , Seawater
9.
Environ Sci Pollut Res Int ; 23(13): 12777-90, 2016 Jul.
Article in English | MEDLINE | ID: mdl-26438371

ABSTRACT

The effects of sediment resuspension on the fate of metals and polychlorinated biphenyls (PCBs) were studied by using a short-term small reactor. Sediments and water were collected nearby the most contaminated site of the Mar Piccolo of Taranto. Contaminant partitioning was calculated between the solid and water phases and, in the latter, between the dissolved and particulate phases and related to physical-chemical variables. Before and after resuspension, metal concentrations in sediments did not vary remarkably. Except for Cd, all the analyzed metals exceeded by many folds both threshold effect level (TEL) and probable effect level (PEL) SQGs. Igeo index values for Hg designated the sediment quality as extremely polluted for Pb, Cu and moderately polluted for Zn. In the dissolved phase, Mn increased of about 70 times, Fe of about 7 times and Hg and Zn of 4 and 3 times, respectively. PCBs in sediments before and after resuspension did not vary for more than 15 %. PCB concentrations exceeded for more than ten times PEL values. After resuspension, PCBs increased from 0.82 to 4.82 ng L(-1) in the dissolved phase and from 0.22 to 202.21 ng L(-1) in the particulate one. The dissolved phase was initially enriched in light- to mid-weight compounds. After resuspension, the particulate phase was enriched in heavier congeners. In particular, hexachlorobiphenyl-153, 149 and 138 together with heptachlorobiphenyl-180 and 187 accounted for 57 % of total PCBs. The dissolved organic carbon (DOC) that increased from 1.31 to 8.55 mg L(-1) likely influenced the fate of metals and PCBs in the dissolved and particulate phases. Despite that the residence time of the contaminated resuspended sediments in the water column is limited, they are still highly toxic for the pelagic trophic web.


Subject(s)
Geologic Sediments/analysis , Metals, Heavy/analysis , Polychlorinated Biphenyls/analysis , Seawater/analysis , Water Pollutants, Chemical/analysis , Environmental Monitoring , Italy , Mass Spectrometry
10.
Environ Sci Pollut Res Int ; 23(13): 12707-24, 2016 Jul.
Article in English | MEDLINE | ID: mdl-26498814

ABSTRACT

The Mar Piccolo is a semi-enclosed basin subject to different natural and anthropogenic stressors. In order to better understand plankton dynamics and preferential carbon pathways within the planktonic trophic web, an integrated approach was adopted for the first time by examining all trophic levels (virioplankton, the heterotrophic and phototrophic fractions of pico-, nano- and microplankton, as well as mesozooplankton). Plankton abundance and biomass were investigated during four surveys in the period 2013-2014. Beside unveiling the dynamics of different plankton groups in the Mar Piccolo, the study revealed that high portion of the plankton carbon (C) pool was constituted by small-sized (<2 µm) planktonic fractions. The prevalence of small-sized species within micro- and mesozooplankton communities was observed as well. The succession of planktonic communities was clearly driven by the seasonality, i.e. by the nutrient availability and physical features of the water column. Our hypothesis is that beside the 'bottom-up' control and the grazing pressure, inferred from the C pools of different plankton groups, the presence of mussel farms in the Mar Piccolo exerts a profound impact on plankton communities, not only due to the important sequestration of the plankton biomass but also by strongly influencing its structure.


Subject(s)
Bivalvia/physiology , Food Chain , Plankton/physiology , Water Quality , Animals , Aquaculture , Aquatic Organisms/physiology , Feeding Behavior , Italy , Plankton/classification , Population Dynamics
11.
Environ Sci Pollut Res Int ; 23(13): 12739-54, 2016 Jul.
Article in English | MEDLINE | ID: mdl-26162444

ABSTRACT

Knowledge on ecosystem functioning can largely contribute to promote ecosystem-based management and its application. The Mar Piccolo of Taranto is a densely populated area at a high risk of environmental crisis. Here, planktonic primary production (PP) and heterotrophic prokaryotic production (HPP) were measured as proxies of functioning in three sampling sites located in two inlets at different levels of industrial contamination, during three sampling surveys (June 2013, February and April 2014). To have a better overall view and provide some insights into the benthic-pelagic coupling, we integrated PP and HPP in the water column with those in the sediments and then discussed this with the origin of the organic matter pools based on analysis of stable isotopes. Heavy metals and polychlorobiphenyls (PCBs) were also analysed in the surface (1 cm) sediment layer and related to the overall ecosystem functioning. Multidimensional scaling (MDS) analysis, based on the main data, clearly separated the second inlet from the first one, more severely impacted by anthropogenic activities. The stable isotope mixing model suggested the prevalent terrestrial/riverine origin of the particulate organic matter pools (mean 45.5 %) in all sampling periods, whereas phytoplankton contributed up to 29 % in February. Planktonic PP and HPP rates followed the same pattern over the entire study period and seemed to respond to phytoplankton dynamics confirming this community as the main driver for the C cycling in the water column. On the contrary, benthic PP rates were almost negligible while HPP rates were lower or comparable to those in the water column indicating that although the Mar Piccolo is very shallow, the water column is much more productive than the surface sediments. The sediment resuspension is likely responsible for a pulsed input of contaminants into the water column. However, their interference with the proper functioning of the pelagic ecosystem seems to be limited to the bottom layers.


Subject(s)
Carbon/analysis , Ecosystem , Organic Chemicals/analysis , Water Pollutants, Chemical/analysis , Environmental Monitoring , Italy
12.
Environ Sci Pollut Res Int ; 23(13): 12691-706, 2016 Jul.
Article in English | MEDLINE | ID: mdl-26206123

ABSTRACT

The response of phytoplankton assemblages to the closure of urban sewage outfalls (USOs) was examined for the Mar Piccolo of Taranto (Mediterranean Sea), a productive semi-enclosed coastal marine ecosystem devoted to shellfish farming. Phytoplankton dynamics were investigated in relation to environmental variables, with a particular emphasis on harmful algal blooms (HABs). Recent analyses evidenced a general reduction of the inorganic nutrient loads, except for nitrates and silicates. Also phytoplankton biomass (chlorophyll a) and abundances were characterized by a decrease of the values, except for the inner area of the basin (second inlet). The phytoplankton composition changed, with nano-sized species, indicators of oligotrophic conditions, becoming dominant over micro-sized species. If the closure of the USOs affected phytoplankton dynamics, however, it did not preserve the Mar Piccolo from HABs and anoxia crises. About 25 harmful species have been detected throughout the years, such as the potentially domoic acid producers Pseudo-nitzschia cf. galaxiae and P seudo-nitzschia cf. multistriata, identified for the first time in these waters. The presence of HABs represents a threat for human health and aquaculture. Urgent initiatives are needed to improve the communication with authorities responsible for environmental protection, economic development, and public health for a sustainable mussel culture in the Mar Piccolo.


Subject(s)
Harmful Algal Bloom , Phytoplankton/physiology , Water Quality , Animals , Aquaculture , Bivalvia/physiology , Italy , Population Dynamics
13.
Mar Pollut Bull ; 79(1-2): 379-88, 2014 Feb 15.
Article in English | MEDLINE | ID: mdl-24286752

ABSTRACT

The effects of long-line mussel farming on microphytobenthos were investigated in a coastal area of the Gulf of Trieste. Sediment grain-size, organic matter content, microalgal abundance and community structure were analysed in September 2008 and March 2009. Four areas were sampled: a twenty-year farm, a four-year farm, a disused farm and a reference site. Principal component analysis (PCA) highlighted a decreasing gradient of organic matter content from the twenty-year farm to the control. Mussel farming seemed to influence microphytobenthic abundance with higher densities in the oldest farm. Three genera were dominant; Navicula and Gyrosigma seemed to be stimulated by the organic load under the active farms while we infer that Nitzschia proliferation was limited by shade caused by mussel ropes. In the PCA, samplings of the disused farm were placed in-between the still active farms and the control, indicating the partial recovery occurred in this site.


Subject(s)
Aquaculture , Bivalvia , Environmental Monitoring , Geologic Sediments/chemistry , Animals , Aquatic Organisms/classification , Aquatic Organisms/physiology , Invertebrates/classification , Invertebrates/physiology , Mediterranean Sea , Seawater/chemistry , Water Pollutants/analysis
SELECTION OF CITATIONS
SEARCH DETAIL
...