Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
Environ Microbiol ; 24(12): 5998-6016, 2022 12.
Article in English | MEDLINE | ID: mdl-36325730

ABSTRACT

The pedogenesis from the mineral substrate released upon glacier melting has been explained with the succession of consortia of pioneer microorganisms, whose structure and functionality are determined by the environmental conditions developing in the moraine. However, the microbiome variability that can be expected in the environmentally heterogeneous niches occurring in a moraine at a given successional stage is poorly investigated. In a 50 m2 area in the forefield of the Lobuche glacier (Himalayas, 5050 m above sea level), we studied six sites of primary colonization presenting different topographical features (orientation, elevation and slope) and harbouring greyish/dark biological soil crusts (BSCs). The spatial vicinity of the sites opposed to their topographical differences, allowed us to examine the effect of environmental conditions independently from the time of deglaciation. The bacterial microbiome diversity and their co-occurrence network, the bacterial metabolisms predicted from 16S rRNA gene high-throughput sequencing, and the microbiome intact polar lipids were investigated in the BSCs and the underlying sediment deep layers (DLs). Different bacterial microbiomes inhabited the BSCs and the DLs, and their composition varied among sites, indicating a niche-specific role of the micro-environmental conditions in the bacterial communities' assembly. In the heterogeneous sediments of glacier moraines, physico-chemical and micro-climatic variations at the site-spatial scale are crucial in shaping the microbiome microvariability and structuring the pioneer bacterial communities during pedogenesis.


Subject(s)
Ice Cover , Soil Microbiology , Ice Cover/microbiology , RNA, Ribosomal, 16S/genetics , Bacteria/genetics , Soil/chemistry
2.
Article in English | MEDLINE | ID: mdl-32235649

ABSTRACT

The source of antibiotic residuals can be directly related to the presence of municipal or industrial wastewater and agricultural activities. Antibiotics can trigger the dissemination of antibiotic resistance genes within bacterial communities. The mobile genetic elements Class 1 integrons (intl1 region) has been already found to be correlated with a wide range of pollutants (i.e., antibiotics, heavy metals), and hence, it has been proposed as a proxy for environmental health. This study aimed to assess the presence of intl1 in different environmental matrices, including agricultural and forest soils, freshwater and unpolluted sediments in the upper Adige River catchment (N Italy), in order to identify the spread of pollutants. Intl1 was detected by direct PCR amplification at different frequencies. The urban and agricultural areas revealed the presence of intl1, except for apple orchards, where it was below the detection limit. Interestingly, intl1 was found in a presumed unpolluted environment (glacier moraine), maybe because of the high concentration of metal ions in the mineral soil. Finally, intl1 was absent in forest fresh-leaf litter samples and occurred with low rates in soil. Our results provide new data in supporting the use of intl1 to detect the environmental health of different land-use systems.


Subject(s)
Environmental Monitoring , Integrons , Rivers/chemistry , Anti-Bacterial Agents , Drug Resistance, Microbial , Italy , Metals, Heavy , Water Pollutants, Chemical
3.
J Hazard Mater ; 353: 108-117, 2018 07 05.
Article in English | MEDLINE | ID: mdl-29655090

ABSTRACT

Wood-tar is a liquid material obtained by wood gasification process, and comprises several polycyclic aromatic hydrocarbons (PAH). Tar biodegradation is a very challenging task, due to its toxicity and to its complex chemistry. The 'microbial resource management' concerns the use of environmental microbial communities potentially able to provide us services. We applied this concept in tar biodegradation. Tar composed by several PAH (including phenanthrene, acenaphthylene and fluorene) was subjected to a biodegradation process in triplicate microcosms spiked with a microbial community collected from PAH-rich soils. In 20 days, 98.9% of tar was mineralized or adsorbed to floccules, while negative controls showed poor PAH reduction. The dynamics of fungal and bacterial communities was assessed through Automated Ribosomal Intergenic Spacer Analysis (ARISA), 454 pyrosequencing of the fungal ITS and of the bacterial 16S rRNA. Quantification of the degrading bacterial communities was performed via quantitative Real Time PCR of the 16S rRNA genes and of the cathecol 2,3-dioxygenase genes. Results showed the importance of fungal tar-degrading populations in the first period of incubation, followed by a complex bacterial dynamical growth ruled by co-feeding behaviors.


Subject(s)
Microbial Consortia , Polycyclic Aromatic Hydrocarbons/metabolism , Wood , Adsorption , Bacteria/classification , Bacteria/genetics , Bacteria/metabolism , Biodegradation, Environmental , Catechol 2,3-Dioxygenase/genetics , Fungi/classification , Fungi/genetics , Fungi/metabolism , Polycyclic Aromatic Hydrocarbons/chemistry , RNA, Ribosomal, 16S
4.
Res Microbiol ; 167(4): 325-333, 2016 May.
Article in English | MEDLINE | ID: mdl-26776565

ABSTRACT

Water springs are complex, fragile and taxa-rich environments, especially in highly dynamic ecosystems such as glacier forefields experiencing glacier retreat. Bacterial communities are important actors in alpine water body metabolism, and have shown both high seasonal and spatial variations. Seven springs from a high alpine valley (Matsch Valley, South Tyrol, Italy) were examined via a multidisciplinary approach using both hydrochemical and microbiological techniques. Amplified ribosomal intergenic spacer analysis (ARISA) and electric conductivity (EC) measurements, as well as elemental composition and water stable isotopic analyses, were performed. Our target was to elucidate whether and how bacterial community structure is influenced by water chemistry, and to determine the origin and extent of variation in space and time. There existed variations in both space and time for all variables measured. Diversity values more markedly differed at the beginning of summer and then at the end; the extent of variation in space was prevalent over the time scale. Bacterial community structural variation responded to hydrochemical parameter changes; moreover, the stability of the hydrochemical parameters played an important role in shaping distinctive bacterial communities.


Subject(s)
Bacteria/classification , Bacteria/isolation & purification , Biota , Geologic Sediments/microbiology , DNA Fingerprinting , Electric Conductivity , Elements , Italy , Natural Springs , Spatio-Temporal Analysis , Water/chemistry
5.
Microb Ecol ; 70(3): 741-50, 2015 Oct.
Article in English | MEDLINE | ID: mdl-25921518

ABSTRACT

Rock varnish is a thin layer of Fe and Mn oxyhydroxides with embedded clay minerals that contain an increased Mn/Fe ratio compared to that of the Earth's crust. Even if the study of rock varnish has important implications in several fields, the composition of epilithic bacterial communities and the distribution of taxa on varnish surfaces are still not wholly described. The aim of this study was (i) to identify the bacterial taxa which show the greatest variation between varnish and non-varnish environments, collected from the same rock, and (ii) to describe the morphology of epilithic communities through scanning electron microscopy (SEM). Triplicate samples of rock surfaces with varnish and triplicate samples without varnish were collected from five sites in Matsch Valley (South Tyrol, Italy). The V4 region of 16S rRNA gene was analyzed by Illumina sequencing. Fifty-five ubiquitous taxa have been examined to assess variation between varnish and non-varnish. Cyanobacteria, Chloroflexi, Proteobacteria along with minor taxa such as Solirubrobacterales, Conexibaxter, and Rhodopila showed significant variations of abundance, diversity, or both responding to the ecology (presence/absence of varnish). Other taxa, such as the genus Edaphobacter, showed a more marked spatial variation responding to the sampling site. SEM images showed a multitude of bacterial morphologies and structures involved in the process of attachment and creation of a suitable environment for growth. The features emerging from this analysis suggest that the highly oxidative Fe and Mn-rich varnish environment favors anoxigenic autotrophy and establishment of highly specialized bacteria.


Subject(s)
Bacterial Physiological Phenomena , Environment , Microbiota , Bacteria/genetics , DNA, Bacterial/genetics , DNA, Bacterial/metabolism , Italy , Microscopy, Electron, Scanning , Polymerase Chain Reaction , RNA, Ribosomal, 16S/genetics , RNA, Ribosomal, 16S/metabolism , Sequence Analysis, DNA , Substrate Specificity
6.
Springerplus ; 3: 391, 2014.
Article in English | MEDLINE | ID: mdl-25110631

ABSTRACT

The rhizobacterial communities of 29 pioneer plants belonging to 12 species were investigated in an alpine ecosystem to assess if plants from different species could select for specific rhizobacterial communities. Rhizospheres and unvegetated soils were collected from a floristic pioneer stage plot at 2,400 m a.s.l. in the forefield of Weisskugel Glacier (Matsch Valley, South Tyrol, Italy), after 160 years of glacier retreat. To allow for a culture-independent perspective, total environmental DNA was extracted from both rhizosphere and bare soil samples and analyzed by Automated Ribosomal Intergenic Spacer Analysis (ARISA) and Denaturing Gradient Gel Electrophoresis (DGGE). ARISA fingerprinting showed that rhizobacterial genetic structure was extremely different from bare soil bacterial communities while rhizobacterial communities clustered strictly together according to the plant species. Sequencing of DGGE bands showed that rhizobacterial communities were mainly composed of Acidobacteria and Proteobacteria whereas bare soil was colonized by Acidobacteria and Clostridia. UniFrac significance calculated on DGGE results confirmed the rhizosphere effect exerted by the 12 species and showed different bacterial communities (P < 0.05) associated with all the plant species. These results pointed out that specific rhizobacterial communities were selected by pioneer plants of different species in a high mountain ecosystem characterized by oligotrophic and harsh environmental conditions, during an early primary succession.

7.
Biomed Res Int ; 2014: 480170, 2014.
Article in English | MEDLINE | ID: mdl-24995302

ABSTRACT

The rhizosphere effect on bacterial communities associated with three floristic communities (RW, FI, and M sites) which differed for the developmental stages was studied in a high-altitude alpine ecosystem. RW site was an early developmental stage, FI was an intermediate stage, M was a later more matured stage. The N and C contents in the soils confirmed a different developmental stage with a kind of gradient from the unvegetated bare soil (BS) site through RW, FI up to M site. The floristic communities were composed of 21 pioneer plants belonging to 14 species. Automated ribosomal intergenic spacer analysis showed different bacterial genetic structures per each floristic consortium which differed also from the BS site. When plants of the same species occurred within the same site, almost all their bacterial communities clustered together exhibiting a plant species effect. Unifrac significance value (P < 0.05) on 16S rRNA gene diversity revealed significant differences (P < 0.05) between BS site and the vegetated sites with a weak similarity to the RW site. The intermediate plant colonization stage FI did not differ significantly from the RW and the M vegetated sites. These results pointed out the effect of different floristic communities rhizospheres on their soil bacterial communities.


Subject(s)
Phylogeny , Plant Roots/genetics , RNA, Ribosomal, 16S/genetics , Soil Microbiology , Altitude , Biodiversity , Ecosystem , Plant Roots/microbiology , Plants/genetics , Rhizosphere
8.
Curr Microbiol ; 67(4): 472-9, 2013 Oct.
Article in English | MEDLINE | ID: mdl-23712376

ABSTRACT

Alpha and beta diversities of the bacterial communities growing on rock surfaces, proto-soils, riparian sediments, lichen thalli, and water springs biofilms in a glacier foreland were studied. We used three molecular based techniques to allow a deeper investigation at different taxonomic resolutions: denaturing gradient gel electrophoresis, length heterogeneity-PCR, and automated ribosomal intergenic spacer analysis. Bacterial communities were mainly composed of Acidobacteria, Proteobacteria, and Cyanobacteria with distinct variations among sites. Proteobacteria were more represented in sediments, biofilms, and lichens; Acidobacteria were mostly found in proto-soils; and Cyanobacteria on rocks. Firmicutes and Bacteroidetes were mainly found in biofilms. UniFrac P values confirmed a significant difference among different matrices. Significant differences (P < 0.001) in beta diversity were observed among the different matrices at the genus-species level, except for lichens and rocks which shared a more similar community structure, while at deep taxonomic resolution two distinct bacterial communities between lichens and rocks were found.


Subject(s)
Bacteria/isolation & purification , Biodiversity , Geologic Sediments/microbiology , Soil Microbiology , Altitude , Bacteria/classification , Bacteria/genetics , Phylogeny
9.
Biodegradation ; 24(5): 603-13, 2013 Sep.
Article in English | MEDLINE | ID: mdl-23187798

ABSTRACT

Propylene glycol (PG) is a main component of aircraft deicing fluids and its extensive use in Northern airports is a source of soil and groundwater contamination. Bacterial consortia able to grow on PG as sole carbon and energy source were selected from soil samples taken along the runways of Oslo Airport Gardermoen site (Norway). DGGE analysis of enrichment cultures showed that PG-degrading populations were mainly composed by Pseudomonas species, although Bacteroidetes were found, as well. Nineteen bacterial strains, able to grow on PG as sole carbon and energy source, were isolated and identified as different Pseudomonas species. Maximum specific growth rate of mixed cultures in the absence of nutrient limitation was 0.014 h(-1) at 4 °C. Substrate C:N:P molar ratios calculated on the basis of measured growth yields are in good agreement with the suggested values for biostimulation reported in literature. Therefore, the addition of nutrients is suggested as a suitable technique to sustain PG aerobic degradation at the maximum rate by autochthonous microorganisms of unsaturated soil profile.


Subject(s)
Bacteria/metabolism , Propylene Glycol/metabolism , Soil Microbiology , Aerobiosis , Bacteria/genetics , Bacteria/growth & development , Biodegradation, Environmental , Cluster Analysis , Denaturing Gradient Gel Electrophoresis , Kinetics , Polymerase Chain Reaction , Pseudomonas/metabolism , RNA, Ribosomal, 16S/genetics , Sequence Analysis, DNA , Soil/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...