Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
J Neurophysiol ; 132(1): 54-60, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38810261

ABSTRACT

Closing our eyes largely shuts down our ability to see. That said, our eyelids still pass some light, allowing our visual system to coarsely process information about visual scenes, such as changes in luminance. However, the specific impact of eye closure on processing within the early visual system remains largely unknown. To understand how visual processing is modulated when eyes are shut, we used functional magnetic resonance imaging (fMRI) to measure responses to a flickering visual stimulus at high (100%) and low (10%) temporal contrasts, while participants viewed the stimuli with their eyes open or closed. Interestingly, we discovered that eye closure produced a qualitatively distinct pattern of effects across the visual thalamus and visual cortex. We found that with eyes open, low temporal contrast stimuli produced smaller responses across the lateral geniculate nucleus (LGN), primary (V1) and extrastriate visual cortex (V2). However, with eyes closed, we discovered that the LGN and V1 maintained similar blood oxygenation level-dependent (BOLD) responses as the eyes open condition, despite the suppressed visual input through the eyelid. In contrast, V2 and V3 had strongly attenuated BOLD response when eyes were closed, regardless of temporal contrast. Our findings reveal a qualitatively distinct pattern of visual processing when the eyes are closed-one that is not simply an overall attenuation but rather reflects distinct responses across visual thalamocortical networks, wherein the earliest stages of processing preserve information about stimuli but are then gated off downstream in visual cortex.NEW & NOTEWORTHY When we close our eyes coarse luminance information is still accessible by the visual system. Using functional magnetic resonance imaging, we examined whether eyelid closure plays a unique role in visual processing. We discovered that while the LGN and V1 show equivalent responses when the eyes are open or closed, extrastriate cortex exhibited attenuated responses with eye closure. This suggests that when the eyes are closed, downstream visual processing is blind to this information.


Subject(s)
Geniculate Bodies , Magnetic Resonance Imaging , Visual Cortex , Humans , Male , Female , Adult , Visual Cortex/physiology , Visual Cortex/diagnostic imaging , Geniculate Bodies/physiology , Geniculate Bodies/diagnostic imaging , Young Adult , Visual Perception/physiology , Visual Pathways/physiology , Visual Pathways/diagnostic imaging , Thalamus/physiology , Thalamus/diagnostic imaging , Photic Stimulation , Brain Mapping
2.
bioRxiv ; 2023 Sep 30.
Article in English | MEDLINE | ID: mdl-37808626

ABSTRACT

Attentional states continuously reflect the predictability and uncertainty in one's environment having important consequences for learning and memory. Beyond well known cortical contributions, rapid shifts in attention are hypothesized to also originate from deep nuclei, such as the basal forebrain (BF) and locus coeruleus (LC) neuromodulatory systems. These systems are also the first to change with aging. Here we characterized the interplay between these systems and their regulation of afferent targets - the hippocampus (HPC) and posterior cingulate cortex (PCC) - across the lifespan. To examine the role of attentional salience on task-dependent functional connectivity, we used a target-distractor go/no go task presented during functional MRI. In younger adults, BF coupling with the HPC, and LC coupling with the PCC, increased with behavioral relevance (targets vs distractors). Although the strength and presence of significant regional coupling changed in middle age, the most striking change in network connectivity was in old age, such that in older adults BF and LC coupling with their cortical afferents was largely absent and replaced by stronger interconnectivity between LC-BF nuclei. Overall rapid changes in attention related to behavioral relevance revealed distinct roles of subcortical neuromodulatory systems. The pronounced changes in functional network architecture across the lifespan suggest a decrease in these distinct roles, with deafferentation of cholinergic and noradrenergic systems associated with a shift towards mutual support during attention guided to external stimuli.

3.
bioRxiv ; 2023 Sep 13.
Article in English | MEDLINE | ID: mdl-37745511

ABSTRACT

Closing our eyes largely shuts down our ability to see. That said, our eyelids still pass some light, allowing our visual system to coarsely process information about visual scenes, such as changes in luminance. However, the specific impact of eye closure on processing within the early visual system remains largely unknown. To understand how visual processing is modulated when eyes are shut, we used functional magnetic resonance imaging (fMRI) to measure responses to a flickering visual stimulus at high (100%) and low (10%) temporal contrasts, while participants viewed the stimuli with their eyes open or closed. Interestingly, we discovered that eye closure produced a qualitatively distinct pattern of effects across the visual thalamus and visual cortex. We found that with eyes open, low temporal contrast stimuli produced smaller responses, across the lateral geniculate nucleus (LGN), primary (V1) and extrastriate visual cortex (V2). However, with eyes closed, we discovered that the LGN and V1 maintained similar BOLD responses as the eyes open condition, despite the suppressed visual input through the eyelid. In contrast, V2 and V3 had strongly attenuated BOLD response when eyes were closed, regardless of temporal contrast. Our findings reveal a qualitative distinct pattern of visual processing when the eyes are closed - one that is not simply an overall attenuation, but rather reflects distinct responses across visual thalamocortical networks, wherein the earliest stages of processing preserves information about stimuli but is then gated off downstream in visual cortex.

SELECTION OF CITATIONS
SEARCH DETAIL
...