Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
J Biol Chem ; 260(9): 5221-4, 1985 May 10.
Article in English | MEDLINE | ID: mdl-2985582

ABSTRACT

Tetrahydrobiopterin, the cofactor for the aromatic amino acid hydroxylases, is synthesized in mammals from GTP via a pathway involving both dihydropterin and tetrahydropterin intermediates. In this work, we have investigated the mechanism of conversion of the product formed from GTP, 7,8-dihydroneopterin triphosphate, into the tetrahydropterin intermediates. Tetrahydrobiopterin can be oxidized under conditions which yield pterin or pterin 6-carboxylate without exchange of the C-6 and C-7 protons. Using these techniques, a gas chromatography/mass spectrometry method was developed to determine that in the biosynthesis of tetrahydrobiopterin de novo, in preparations of bovine adrenal medulla, the C-6 proton of tetrahydrobiopterin is derived from water and not from NADPH. In contrast, the C-6 proton of tetrahydrobiopterin produced from sepiapterin (6-lactoyl-7,8-dihydropterin) comes from NADPH. The results are consistent with evidence for the formation of the first tetrahydropterin intermediate by a tautomerization without any requirement for NADPH.


Subject(s)
Biopterins/biosynthesis , Deuterium/metabolism , NADP/metabolism , Pteridines/biosynthesis , Animals , Biopterins/analogs & derivatives , Cattle , Gas Chromatography-Mass Spectrometry , Guanosine Triphosphate/metabolism , Models, Chemical , Protons
SELECTION OF CITATIONS
SEARCH DETAIL
...