Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 75
Filter
Add more filters










Publication year range
1.
An Acad Bras Cienc ; 96(2): e20230840, 2024.
Article in English | MEDLINE | ID: mdl-38747838

ABSTRACT

The extraction of valuable compounds from dried fruits and vegetables by microwave hydrodiffusion and gravity (MHG) requires previous hydration of the plant material. In this work, ultrasound was used to speed up the hydration of guarana powder before MHG extraction and increase caffeine recovery. The humidification step was speeded up with ultrasound taking only 15 min over 60 min without ultrasound. Water and 50% (v/v) ethanol were evaluated as green solvents for humidification, with a higher concentration of caffeine obtained for the hydroalcoholic solution. Ultrasound pretreatment allowed guarana extracts from MHG with two times more caffeine for both solvents evaluated. Therefore, ultrasound can be used in the hydration step before MHG extraction to reduce time and increase caffeine recovery from guarana powder.


Subject(s)
Caffeine , Microwaves , Paullinia , Plant Extracts , Powders , Caffeine/analysis , Caffeine/isolation & purification , Paullinia/chemistry , Plant Extracts/chemistry , Gravitation , Ultrasonics , Solvents
2.
Meat Sci ; 209: 109418, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38113656

ABSTRACT

The influence of different concentrations of NaCl (2.5% and 1.75%), basic electrolyzed water (BEW), and ultrasound (US, 25 kHz, 159 W) on the quality of fresh sausages was studied. During storage at 5 °C, TBARS, pH, Eh, aw, nitrous pigments, and bacterial evolution were evaluated at three specific time intervals: 1d, 15d, and 30d. At the same time, the volatile compounds and sensory profile were specifically assessed on both the 1d and 30d. Notably, sausages with 1.75% NaCl and BEW displayed higher pH values (up to 6.30) and nitrous pigment formation, alongside reduced Eh (as low as 40.55 mV) and TBARS values (ranging from 0.016 to 0.134 mg MDA/kg sample), compared to the 2.5% NaCl variants. Protein content ranged between 13.01% and 13.75%, while lipid content was between 18.23% and 18.86%, consistent across all treatments. Psychrotrophic lactic bacteria showed a significant increase in low-NaCl sausages, ranging from 5.77 to 7.59 log CFU/g, indicative of potential preservative benefits. The sensory analysis favored the TUSBEW70 treatment for its salty flavor on the 30th day, reflecting a positive sensory acceptance. The study highlights that employing US and BEW in sausage preparation with reduced NaCl content (1.75%) maintains quality comparable to higher salt (2.5%) counterparts. These findings are crucial for meat processing, presenting a viable approach to producing healthier sausages with reduced sodium content without compromising quality, aligning with consumer health preferences and industry standards.


Subject(s)
Meat Products , Sodium Chloride , Thiobarbituric Acid Reactive Substances/analysis , Meat Products/analysis , Oxidation-Reduction , Oxidative Stress , Taste , Color
3.
Foods ; 12(18)2023 Sep 19.
Article in English | MEDLINE | ID: mdl-37761195

ABSTRACT

This study investigated the feasibility of replacing pork meat with pea protein isolate in canned pâtés at proportions ranging from 12.5% to 50%. The results indicated that protein reformulation did not significantly impact the protein content and lipid oxidation of the pâtés. Reformulated products exhibited a decrease in a∗ values and an increase in b∗ values. These color changes were also sensorially identified in the Check-All-That-Apply (CATA) test, where the reformulated pâtés were associated with attributes such as 'yellow color' and 'unpleasant color', which were inversely related to product acceptance. The protein reformulation reduced the hardness, gumminess, and chewiness parameters of the pâtés. These textural changes were positively reflected in the CATA test, where the reformulated products were characterized by attributes like 'soft texture', 'pleasant texture', and 'good spreadability', which strongly correlated with higher consumer acceptance. Notably, pâtés with 37.5% and 50% substitutions of pork meat with pea protein showed acceptability levels comparable to the control, and those with up to a 25% substitution exhibited superior sensory acceptability. However, the color alteration suggests the need for future optimization, such as using natural colorants. In summary, the results of this study not only validate the feasibility of replacing pork meat with pea protein in pâtés but also offer valuable insights for future investigations to develop more innovative and sustainable meat products.

4.
An Acad Bras Cienc ; 95(suppl 1): e20221106, 2023.
Article in English | MEDLINE | ID: mdl-37646713

ABSTRACT

An ultrasound pretreatment was used to increase anthocyanins content in blackberry juice. Whole fruits were inserted into a glass vessel without contact with any solvent, sonicated in an ultrasonic bath, and then pressed with a manual juicer. The experimental design showed that 7 min at 65% of ultrasound amplitude increased the anthocyanin content in juices from 31 to 56% for BRS Xingu, Guarani, and Xavante cultivars. Two major anthocyanins, cyanidin-3-glucoside and cyanidin-3-rutinoside were found in higher concentrations for sonicated fruits. Therefore, ultrasonic pretreatment of whole fruits increased the anthocyanins in blackberry juices using a simple, fast, and green approach.


Subject(s)
Anthocyanins , Rubus , Brazil , Sonication , Fruit , Solvents
5.
Foods ; 12(13)2023 Jun 21.
Article in English | MEDLINE | ID: mdl-37444177

ABSTRACT

This study produced two gels: one solely using psyllium fiber (GP) and another combining this fiber with linseed oil (GL+P). Both gels replaced 15% and 30% of the animal fat content of salamis. The objective was to evaluate the impact of this lipid reformulation on the technological, nutritional, oxidative, and sensory properties of the salamis. The lipid reformulation did not alter the evolution of pH and lactic acid bacteria during processing. The addition of GL+P did not interfere with the product's drying process. However, replacing 30% of animal fat with the GP resulted in greater weight loss and a lower final Aw value. The lipid reformulation minimally affected the color of the salamis but significantly enhanced their nutritional profile. This improvement was marked by a decrease in fat content and an increase in protein. Specifically, in the samples with GL+P, there was a rise in linolenic acid content and a reduction in the n-6/n-3 PUFA ratio. Adding GP did not affect the salamis' oxidative stability and sensory profile. However, substituting 30% of the animal fat with GL+P increased the TBARS values, and volatile compounds derived from lipid oxidation hampered the products' sensory profiles. A reduction in these negative effects was observed when replacing 15% of the fat with GL+P, suggesting this to be the ideal dosage for balancing the nutritional benefits with maintaining the product's oxidative stability.

6.
Meat Sci ; 204: 109273, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37419026

ABSTRACT

This study investigated the effect of a 50% reduction in sodium nitrite and the addition of nisin (200 mg/kg) and different concentrations (0, 0.5%, 0.75%, and 1%) of jabuticaba peel extract (JPE) on the main attributes affected by this chemical additive in Bologna-type sausages. The modified treatments showed approximately 50% lower residual nitrite than the control throughout the storage (60 days at 4 °C). The proposed reformulation did not affect the color (L*, a*, and b*), and the ΔE values (< 2) demonstrated high color stability during storage. Physicochemical (TBARS and volatile compounds) and sensory analyses performed to evaluate oxidative stability indicated that JPE exhibited antioxidant activity comparable to sodium nitrite. The microbiological quality of the reformulated products was similar to the control, but further studies should be conducted to assess the effect of this reformulation strategy on the growth of pathogenic microorganisms impacted by nitrite.


Subject(s)
Meat Products , Nisin , Sodium Nitrite/chemistry , Nisin/pharmacology , Antioxidants/pharmacology , Antioxidants/chemistry , Oxidation-Reduction , Thiobarbituric Acid Reactive Substances/analysis , Meat Products/analysis
7.
Foods ; 12(11)2023 May 26.
Article in English | MEDLINE | ID: mdl-37297401

ABSTRACT

Olive pomace oil is obtained when a mixture of olive pomace and residual water is subjected to a second centrifugation. This oil has small amounts of phenolic and volatile compounds compared with extra-virgin olive oil. This study aimed to promote the aromatization of olive pomace oil with rosemary and basil using ultrasound-assisted maceration (UAM) to increase its bioactive potential. For each spice, the ultrasound operating conditions (amplitude, temperature, and extraction time) were optimized through central composite designs. Free fatty acids, peroxide value, volatile compounds, specific extinction coefficients, fatty acids, total phenolic compounds, antioxidant capacity, polar compounds, and oxidative stability were determined. After obtaining the optimal maceration conditions assisted by ultrasound, pomace oils flavored with rosemary and basil were compared to pure olive pomace oil. Quality parameters and fatty acids showed no significant difference after UAM. Rosemary aromatization by UAM resulted in a 19.2-fold increase in total phenolic compounds and a 6-fold increase in antioxidant capacity, in addition to providing the most significant increase in oxidative stability. Given this, aromatization by ultrasound-assisted maceration is an efficient method to increase, in a short time, the bioactive potential of olive pomace oil.

8.
Meat Sci ; 203: 109231, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37263032

ABSTRACT

The effects of ultrasound (US) on myoglobin modification, nitrous pigment formation, color, and total and free sulfhydryl content in nitrite-free pork meat batter were assessed. Five treatments were elaborated: Control (without US); TUS10'12 and TUS20'12 (sonication at 25 kHz, at 12 °C for 10 and 20 min, respectively); TUS10'18 and TUS20'18 (sonication at 25 kHz, at 18 °C for 10 and 20 min, respectively). Sonication for 20 min at 12 °C increased OxyMb and DeoxyMb pigments while reducing MetMb levels. This US condition also yielded higher red color indices and lower yellow color indices. Moreover, TUS20'12 exhibited enhanced nitrous pigment formation and decreased FerrylMb and free sulfhydryl (SH) values, indicating reduced oxidation in OxyMb and DeoxyMb pigments. In conclusion, the findings demonstrate that US can impart a cured color to nitrite-free meat products.


Subject(s)
Pork Meat , Red Meat , Animals , Swine , Nitrites , Pork Meat/analysis , Myoglobin/metabolism , Oxidation-Reduction
9.
Foods ; 12(8)2023 Apr 13.
Article in English | MEDLINE | ID: mdl-37107426

ABSTRACT

Hydrogelled emulsions (HEs) of linseed oil and pea protein (PP) were produced with four levels (0, 5, 7.5, and 10%) of raspberry extract obtained by a green extraction technique (microwave hydrodiffusion and gravity-MHG). HEs were applied in burgers to replace 50% of pork backfat content. The products' technological, nutritional, oxidative, microbiological, and sensory properties were evaluated. Besides reducing the fat level by approximately 43%, the reformulation reduced the n-6/n-3 PUFA ratio to healthy levels, decreased the diameter reduction by 30%, and increased the cooking yield by 11%. Including 7.5 and 10% of raspberry extract in the HEs decreased the oxidative defects caused by the enrichment of the burgers with omega-3 fatty acids. In addition, the raspberry extract did not cause alterations in the mesophilic aerobic count and the burgers' sensory profile.

10.
Meat Sci ; 195: 109028, 2023 Jan.
Article in English | MEDLINE | ID: mdl-36335868

ABSTRACT

Hydrogelled emulsions (HEs) produced with linseed oil and different levels of pea protein (PP) (0, 5, 10, 15, and 20%) were used to replace 50% of animal fat in burgers. The effect of this lipid reformulation on the nutritional, technological, oxidative, microbiological, and sensory quality of the burgers was evaluated during their refrigerated storage (4 °C for 12 days). The reformulated burgers displayed a reduction of >40% in fat and an increase of up to 10% in protein content. Lipid reformulation also increased the PUFA/SFA ratio and reduced the n-6/n-3 PUFAs ratio and the atherogenicity and thrombogenicity indices of the lipid fraction of the burgers. Including 5 and 10% of PP in the HEs made it possible to obtain burgers of high technological quality and with a sensory profile similar to full-fat products. PP was also efficient in reducing the increase in the lipid oxidation caused by the enrichment with n-3 PUFAs.


Subject(s)
Fatty Acids, Omega-3 , Meat Products , Pea Proteins , Pork Meat , Red Meat , Animals , Swine , Linseed Oil , Emulsions , Red Meat/analysis , Plant Oils , Meat Products/analysis
11.
Meat Sci ; 195: 109012, 2023 Jan.
Article in English | MEDLINE | ID: mdl-36274372

ABSTRACT

This study evaluated the combination of high-power ultrasound (HPU), micronized salt (MS), and low KCl levels as a strategy to produce reduced sodium Bologna-type sausages. Samples with 50% NaCl reduction were produced with regular salt (RS) or MS and 0.5% KCl. The sausages were sonicated for 0 or 27 min in an ultrasonic bath (25 kHz, 60% amplitude, normal mode, 20 °C) immediately after filling. The sodium reformulation strategy was effective in compensating for the defects in the emulsion stability and texture profile caused by the NaCl reduction. Besides, the combination of HPU, MS, and KCl did not cause major impacts on the evolution of pH, Eh, and TBARS values of the sausages during storage (21 days at 4 °C). The use of MS and KCl also allowed a reduction by 50% of the NaCl content (< 42% Na; Na/K ratio: 1.2 to 1.3) of the samples without affecting the salty taste, which was enhanced by the HPU treatment.


Subject(s)
Meat Products , Sodium Chloride , Sodium Chloride/chemistry , Consumer Behavior , Meat Products/analysis , Sodium Chloride, Dietary , Sodium , Taste
12.
Food Res Int ; 162(Pt A): 111931, 2022 12.
Article in English | MEDLINE | ID: mdl-36461278

ABSTRACT

Controlling food spoilage fungi remains a challenge for food industries, and regulations on the usage of chemical disinfectants are becoming restrictive. Then, this study aimed to evaluate electrolyzed water (EW) as a sustainable alternative for food spoilage fungi inactivation. The experiment was carried out according to the protocol for testing the antifungal effects of chemical sanitizers by the European Committee for Standardization (CEN), using acidic electrolyzed water (AEW-AAC: 85 ppm; pH: 2.65; ORP: 1120 mV) and a basic electrolyzed water (BEW- pH: 11.12; ORP: -209 mV) to inactivate spoilage fungi strains from bread (Hyphopichia burtonii and Penicillium roqueforti) and cheese (P. roqueforti and Penicillium commune), besides the standard fungi for this type of essay (Candida albicans and Aspergillus brasiliensis). AEW presented a higher antifungal effect, inactivating an average of 89 % of the exposed population when compared to its respective BEW, which inactivates about 81.5 %. In general, the standard strains A. brasiliensis (ATCC 16404) and Candida albicans (ATCC 24433) were more sensitive to both AEW and BEW than the food-spoilage strains. Among those, P. roqueforti strains were the most sensitive, followed by P. commune strains, while H. burtonii strains were the most tolerant. EW can be a sustainable alternative for product surface and facility cleaning with further antifungal action when a sanitization step is not mandatory or needed. Future studies searching for conditions to improve the antifungal action of EW could make their industrial usage more viable.


Subject(s)
Bread , Cheese , Antifungal Agents/pharmacology , Water , Candida albicans
13.
Food Res Int ; 160: 111590, 2022 10.
Article in English | MEDLINE | ID: mdl-36076433

ABSTRACT

Microalgae are photosynthetic microorganisms that stand out from conventional food sources and ingredients due to their high growth rate and adaptability. In addition to being highly sustainable, significant concentrations of proteins, lipids, and pigments accumulate in their cell structures from photosynthesis. Hence, this study sought to evaluate the food potential of Scenedesmus obliquus biomasses obtained from photosynthetic cultures enriched with 3, 5, 10, 15, 20, and 25% carbon dioxide (CO2) (v/v). Cultivations with 3, 5, and 10% CO2 showed greater amino acids and proteins synthesis; the protein content reached values above 56% of the dry biomass and high protein quality, due to the presence of most essential amino acids at recommended levels for the human diet. The highest concentrations of chlorophylls were found in cultures with 15, 20, and 25% CO2 (24.2, 23.1 and 30.8 mg g-1, respectively), although the profiles showed higher percentages of degradation compounds. Carotenoid concentrations were three times higher in cultures with 3, 5, and 10% CO2 (25.3, 22.7 and 18.1 mg g-1, respectively) and all-trans-ß-carotene was the major compound. Lipid synthesis was intensified at higher CO2 enrichment; the percentages obtained were 14.8% of lipids in the culture with 15% CO2, 15.0% with 20% CO2, and 13.7% with 25% CO2. In addition, greater polyunsaturated fatty acids accumulation and a significant reduction in the n6/n3 ratio were also observed at the highest CO2 concentrations. Our findings showed that CO2 treatments significantly altered all compounds concentrations in S. obliquus biomasses, which presented satisfactory composition for application in foods and as ingredients.


Subject(s)
Chlorophyceae , Scenedesmus , Biomass , Carbon Dioxide/metabolism , Chlorophyceae/metabolism , Humans , Lipids , Photosynthesis , Scenedesmus/metabolism
14.
Adv Food Nutr Res ; 102: 123-179, 2022.
Article in English | MEDLINE | ID: mdl-36064292

ABSTRACT

Meat products are an excellent source of high biological value proteins, in addition to the high content of minerals, vitamins, and bioactive compounds. However, meat products contain compounds that can cause a variety of adverse health effects and pose a serious health threat to humans. In this sense, this chapter will address recent strategies to assist in the development of healthier meat products. The main advances about the reduction of sodium and animal fat in meat products will be presented. In addition, strategies to make the lipid profile of meat products more nutritionally advantageous for human health will also be discussed. Finally, the reduction of substances of safety concern in meat products will be addressed, including phosphates, nitrites, polycyclic aromatic hydrocarbons, heterocyclic aromatic amines, as well as products from lipid and protein oxidation.


Subject(s)
Meat Products , Animals , Humans , Lipids , Nitrites , Vitamins
15.
Crit Rev Food Sci Nutr ; : 1-20, 2022 Sep 19.
Article in English | MEDLINE | ID: mdl-36123812

ABSTRACT

The technological, sensory, and nutritional characteristics of meat products are directly related to their animal fat content. Adding animal fat to meat products significantly influences their sensory properties, such as color, taste, and aroma. In addition, the physicochemical properties of fat decisively contribute to the texture of meat products, playing a fundamental role in improving the properties of viscosity, creaminess, chewiness, cohesiveness, and hardness. However, meat products' high animal fat content makes them detrimental to a healthy diet. Therefore, reducing the fat content of meat products is an urgent need, but it is a challenge for researchers and the meat industry. The fat reduction in meat products without compromising the product's quality and with minor impacts on the production costs is not a simple task. Thus, strategies to reduce the fat content of meat products should be studied with caution. During the last decades, several fat replacers were tested, but among all of them, the use of flours and fibers, hydrocolloids, mushrooms, and some animal proteins (such as whey and collagen) presented promising results. Additionally, multiple strategies to gel oils of vegetable origin are also a current topic of study, and these have certain advantages such as their appearance (attempts to imitate animal fat), while also improving the nutritional profile of the lipid fraction of the products meat. However, each of these fat substitutes has both advantages and limitations in their use, which will be discussed in subsequent sections. Therefore, due to the growing interest in this issue, this review focuses on the main substitutes for animal fat used in the production of meat products, offering detailed and updated information on the latest discoveries and advances in this area.

16.
Meat Sci ; 193: 108931, 2022 Nov.
Article in English | MEDLINE | ID: mdl-35940111

ABSTRACT

The combination of high-power ultrasound (HPU) and bamboo fiber (BF) was investigated as a strategy to produce phosphate-free meat emulsions. The samples were made with the addition of 0 and 0.25% of alkaline phosphate and 0, 2.5, and 5% BF. Immediately after filling, the samples were sonicated for 0 or 27 min at normal mode, 25 kHz, 60% amplitude, and 20 °C. The samples made with BF and without phosphate showed higher emulsion stability compared to the control made with phosphate. The addition of 2.5% BF effectively compensated for the texture changes due to the absence of phosphate. HPU improved the effect of BF on the texture of meat emulsions by increasing cohesiveness. No significant impact of HPU and BF was observed on the oxidative quality of the samples. However, the instrumental assays and the sensory evaluation demonstrated that the absence of phosphate increased the lipid oxidation of the samples from the beginning of storage.


Subject(s)
Meat Products , Dietary Fiber , Emulsions , Meat , Meat Products/analysis , Oxidative Stress , Phosphates
17.
Curr Res Food Sci ; 5: 345-350, 2022.
Article in English | MEDLINE | ID: mdl-35198993

ABSTRACT

A wide variety of by-products are produced by the industry when animals are slaughtered. However, the proteins present in these by-products, are not being fully useable, in the elaboration of value-added products. Staphylococcus xylosus is commonly used as a starter culture in meat products subjected to ripening for a long period, as it produces proteolytic and lipolytic enzymes that improve the sensory quality of the products. Ultrasound (US) has been arousing interest in the meat industry, as it reduces processing time and also improves the technological and sensory quality of meat products. However, the stimulate effect of US on the growth of S. xylosus in by-products from the poultry industry is still unknown. Thus, this study aimed to evaluate the stimulate effect of US on the growth of S. xylosus inoculated in by-products from the poultry industry. S. xylosus was inoculated (5.63 log CFU/g) in sterilized by-products from the poultry, which were then sonicated at 37 °C for 0, 15, 30, and 45 min according to the following parameters: frequencies of 130 and 35 kHz, amplitudes of 50% and 80% and normal and degas operating modes. The sonicated samples were incubated at 37 °C for 0, 24, 48, and 72 h. Soon after sonication, no stimulate effect of US was observed on the growth of S. xylosus. However, after 24 h of incubation, the samples sonicated for 15 and 30 min in normal mode, at 35 and 130 kHz, and amplitudes of 50 and 80% exhibited better stimulate effect at the growth S. xylosus counts (p < 0.01) when compared to the Control, with values of 8.23 and 7.77 log CFU/g, respectively. These results can be exploited to obtain new added-value products, having as raw material by-products from the poultry industry.

18.
Int J Food Microbiol ; 353: 109310, 2021 Sep 02.
Article in English | MEDLINE | ID: mdl-34174509

ABSTRACT

Ultrasound (US) and basic electrolyzed water (BEW) are considered emerging technologies; however, few studies have addressed the combination of both technologies in emulsified meat products. This study aimed to evaluate the individual and combined effect of US (25 kHz; 175 W; 20 min) and BEW (pH 10.99; -92.33 mV) on the microbiological and oxidative profile of low-sodium mortadellas (30% of NaCl reduction) stored for 90 days at 5 °C. The use of BEW alone increased the pH and reduced the redox potential of mortadellas, while the US did not affect these parameters. The combined application of US and BEW reduced the lactic acid bacteria counts by up to 0.36 log CFU/g. In addition, BEW stimulated the growth of lipolytic bacteria. The treatments subjected to US application alone showed a lower growth rate of lipolytic bacteria, lower lipid and protein oxidation, and higher ΔE* values. Therefore, the application of US and BEW may be a promising strategy to improve the microbiological and oxidative quality of mortadella during storage.


Subject(s)
Food Handling , Food Microbiology , Meat Products , Ultrasonic Waves , Water , Colony Count, Microbial , Food Handling/methods , Food Microbiology/methods , Meat Products/analysis , Meat Products/microbiology , Meat Products/radiation effects , Oxidation-Reduction , Water/chemistry , Water/pharmacology
19.
Meat Sci ; 179: 108534, 2021 Sep.
Article in English | MEDLINE | ID: mdl-33975259

ABSTRACT

A freeze-dried extract from the bark of mate branches (BMBE) containing high chlorogenic acids (CGA) content (30 g 100 g-1) was produced. Then, chia oil was mixed with 7.5% BMBE and sonicated for 0, 10, and 20 min. Chia oil with or without the addition of BMBE was hydrogelled and used to produce buffalo burgers with 50% reduction in animal fat. CGA levels and the nutritional, oxidative, and sensory properties of the burgers were analyzed. A reduction of ~30% fat and an increase above 60% PUFA/SFA ratio was observed for the reformulated raw and cooked burgers. In addition, the Omega-6/Omega-3 PUFA ratio of the burgers decreased from 20.8 (raw) and 31.9 (cooked) to values lower than 2. The addition of BMBE enriched the burgers with CGA, preventing an increase in lipid oxidation caused by chia oil. The addition of BMBE-enriched hydrogelled chia oil not subjected to sonication did not affect the sensory properties of the burgers.


Subject(s)
Chlorogenic Acid , Fatty Acids, Omega-3/analysis , Meat Products/analysis , Adult , Animals , Buffaloes , Consumer Behavior , Female , Gels , Humans , Ilex paraguariensis/chemistry , Male , Middle Aged , Plant Extracts , Plant Oils , Salvia/chemistry , Swine , Thiobarbituric Acid Reactive Substances/analysis
20.
Food Res Int ; 140: 109900, 2021 02.
Article in English | MEDLINE | ID: mdl-33648202

ABSTRACT

Apples have a continuous hydrophobic layer that covers the surface of the fruit, which is called the cuticle. The effects of 1-methylcyclopropene (1-MCP) on the cuticular wax layer of apples were reported after cold storage, although the interaction between 1-MCP and dynamic controlled atmosphere (DCA) is not yet known. Therefore, this study aimed to analyze the effects of 1-MCP on the wax composition and metabolism of 'Maxi Gala' apples after storage in a controlled atmosphere (CA) and dynamic controlled atmosphere based on chlorophyll fluorescence (DCA-CF) and respiratory quotient (DCA-RQ; RQ = 1.3 and 1.5). The 1-MCP treatment effectively decreased ethylene production for CA and DCA-CF treatments, while in DCA-RQ treatments produced no effect. The average extracted cuticular wax content of 'Maxi Gala' apples was 16.65 g m-2 and no differences in storage conditions or 1-MCP application were observed. Alkanes, alcohols, fatty acids, aldehydes, and terpenoids were identified in the chemical composition of the cuticular waxes, being alkanes and fatty acids the predominant ones. Moreover, 1-MCP decreased fatty acid and 10-nonacosanol concentrations in the fruit. Fruit with the 1-MCP application and stored in DCA had lower α-farnesene concentrations. The wax compositions of the DCA-stored apples with and without 1-MCP were similar. However, 1-MCP treatment resulted in a greater mass loss in fruit stored in DCA.


Subject(s)
Malus , Atmosphere , Cyclopropanes , Waxes
SELECTION OF CITATIONS
SEARCH DETAIL
...