Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 16 de 16
Filter
Add more filters










Publication year range
1.
APL Bioeng ; 4(3): 036101, 2020 Sep.
Article in English | MEDLINE | ID: mdl-32637856

ABSTRACT

To improve the survival rate of cancer patients, new diagnosis strategies are necessary to detect lower levels of cancer cells before and after treatment regimens. The scarcity of diseased cells, particularly in residual disease after treatment, demands highly sensitive detection approaches or the ability to enrich the diseased cells in relation to normal cells. We report a label-free microfluidic approach to enrich leukemia cells from healthy cells using inherent differences in cell biophysical properties. The microfluidic device consists of a channel with an array of diagonal ridges that recurrently compress and translate flowing cells in proportion to cell stiffness. Using devices optimized for acute T cell leukemia model Jurkat, the stiffer white blood cells were translated orthogonally to the channel length, while softer leukemia cells followed hydrodynamic flow. The device enriched Jurkat leukemia cells from white blood cells with an enrichment factor of over 760. The sensitivity, specificity, and accuracy of the device were found to be > 0.8 . The values of sensitivity and specificity could be adjusted by selecting one or multiple outlets for analysis. We demonstrate that low levels of Jurkat leukemia cells (1 in 10 4 white blood cells) could be more quickly detected using flow cytometry by using the stiffness sorting pre-enrichment. In a second mode of operation, the device was implemented to sort resistive leukemia cells from both drug-sensitive leukemia cells and normal white blood cells. Therefore, microfluidic biomechanical sorting can be a useful tool to enrich leukemia cells that may improve downstream analyses.

2.
Integr Biol (Camb) ; 12(2): 21-33, 2020 03 06.
Article in English | MEDLINE | ID: mdl-32118264

ABSTRACT

Accumulating evidence suggests that our ability to predict chemical effects on breast cancer is limited by a lack of physiologically relevant in vitro models; the typical in vitro breast cancer model consists of the cancer cell and excludes the mammary microenvironment. As the effects of the microenvironment on cancer cell behavior becomes more understood, researchers have called for the integration of the microenvironment into in vitro chemical testing systems. However, given the complexity of the microenvironment and the variety of platforms to choose from, identifying the essential parameters to include in a chemical testing platform is challenging. This review discusses the need for more complex in vitro breast cancer models and outlines different approaches used to model breast cancer in vitro. We provide examples of the microenvironment modulating breast cancer cell responses to chemicals and discuss strategies to help pinpoint what components should be included in a model.


Subject(s)
Antineoplastic Agents/pharmacology , Breast Neoplasms/drug therapy , Tumor Microenvironment/drug effects , Carcinoma, Intraductal, Noninfiltrating/diagnosis , Cell Line, Tumor , Disease Progression , Drug Screening Assays, Antitumor , Epithelium/pathology , Extracellular Matrix/metabolism , Female , Humans , Inflammation , Models, Statistical , Neoplasms , Phenotype , Tissue Engineering
3.
Nat Biomed Eng ; 2: 453-463, 2018.
Article in English | MEDLINE | ID: mdl-30533277

ABSTRACT

Alterations in the mechanical properties of erythrocytes occurring in inflammatory and hematologic disorders such as sickle cell disease (SCD) and malaria often lead to increased endothelial permeability, haemolysis, and microvascular obstruction. However, the associations among these pathological phenomena remain unknown. Here, we report a perfusable, endothelialized microvasculature-on-a-chip featuring an interpenetrating-polymer-network hydrogel that recapitulates the stiffness of blood-vessel intima, basement membrane self-deposition and self-healing endothelial barrier function for longer than 1 month. The microsystem enables the real-time visualization, with high spatiotemporal resolution, of microvascular obstruction and endothelial permeability under physiological flow conditions. We found how extracellular heme, a hemolytic byproduct, induces delayed but reversible endothelial permeability in a dose-dependent manner, and demonstrate that endothelial interactions with SCD or malaria-infected erythrocytes cause reversible microchannel occlusion and increased in situ endothelial permeability. The microvasculature-on-a-chip enables mechanistic insight into the endothelial barrier dysfunction associated with SCD, malaria and other inflammatory and haematological diseases.

4.
Nat Commun ; 9(1): 509, 2018 02 06.
Article in English | MEDLINE | ID: mdl-29410404

ABSTRACT

Hemostasis encompasses an ensemble of interactions among platelets, coagulation factors, blood cells, endothelium, and hemodynamic forces, but current assays assess only isolated aspects of this complex process. Accordingly, here we develop a comprehensive in vitro mechanical injury bleeding model comprising an "endothelialized" microfluidic system coupled with a microengineered pneumatic valve that induces a vascular "injury". With perfusion of whole blood, hemostatic plug formation is visualized and "in vitro bleeding time" is measured. We investigate the interaction of different components of hemostasis, gaining insight into several unresolved hematologic issues. Specifically, we visualize and quantitatively demonstrate: the effect of anti-platelet agent on clot contraction and hemostatic plug formation, that von Willebrand factor is essential for hemostasis at high shear, that hemophilia A blood confers unstable hemostatic plug formation and altered fibrin architecture, and the importance of endothelial phosphatidylserine in hemostasis. These results establish the versatility and clinical utility of our microfluidic bleeding model.


Subject(s)
Bleeding Time , Blood Coagulation Tests , Hemorrhage , Hemostasis , Microfluidics , Blood Coagulation , Blood Platelets/metabolism , Cell Membrane/metabolism , Endothelial Cells/metabolism , Human Umbilical Vein Endothelial Cells , Humans , Ligands , Platelet Adhesiveness , Shear Strength , Stress, Mechanical
5.
Lab Chip ; 17(22): 3804-3816, 2017 11 07.
Article in English | MEDLINE | ID: mdl-29052682

ABSTRACT

Blood cells circulate in a dynamic fluidic environment, and during hematologic processes such as hemostasis, thrombosis, and inflammation, blood cells interact biophysically with a myriad of vascular matrices-blood clots and the subendothelial matrix. While it is known that adherent cells physiologically respond to the mechanical properties of their underlying matrices, how blood cells interact with their mechanical microenvironment of vascular matrices remains poorly understood. To that end, we developed microfluidic systems that achieve high fidelity, high resolution, single-micron PDMS features that mimic the physical geometries of vascular matrices. With these electron beam lithography (EBL)-based microsystems, the physical interactions of individual blood cells with the mechanical properties of the matrices can be directly visualized. We observe that the physical presence of the matrix, in and of itself, mediates hematologic processes of the three major blood cell types: platelets, erythrocytes, and leukocytes. First, we find that the physical presence of single micron micropillars creates a shear microgradient that is sufficient to cause rapid, localized platelet adhesion and aggregation that leads to complete microchannel occlusion; this response is enhanced with the presence of fibrinogen or collagen on the micropillar surface. Second, we begin to describe the heretofore unknown biophysical parameters for the formation of schistocytes, pathologic erythrocyte fragments associated with various thrombotic microangiopathies (poorly understood, yet life-threatening blood disorders associated with microvascular thrombosis). Finally, we observe that the physical interactions with a vascular matrix is sufficient to cause neutrophils to form procoagulant neutrophil extracellular trap (NET)-like structures. By combining electron beam lithography (EBL), photolithography, and soft lithography, we thus create microfluidic devices that provide novel insight into the response of blood cells to the mechanical microenvironment of vascular matrices and have promise as research-enabling and diagnostic platforms.


Subject(s)
Blood Cells , Cellular Microenvironment/physiology , Microfluidic Analytical Techniques/instrumentation , Microfluidic Analytical Techniques/methods , Blood Cells/cytology , Blood Cells/physiology , Cells, Cultured , Dimethylpolysiloxanes , Equipment Design , Humans , Models, Biological , Nylons , Platelet Activation/physiology , Thrombosis/physiopathology , Thrombotic Microangiopathies/physiopathology
6.
Blood ; 130(24): 2654-2663, 2017 12 14.
Article in English | MEDLINE | ID: mdl-28978568

ABSTRACT

Abnormal sickle red blood cell (sRBC) biomechanics, including pathological deformability and adhesion, correlate with clinical severity in sickle cell disease (SCD). Clinical intravenous fluids (IVFs) of various tonicities are often used during treatment of vaso-occlusive pain episodes (VOE), the major cause of morbidity in SCD. However, evidence-based guidelines are lacking, and there is no consensus regarding which IVFs to use during VOE. Further, it is unknown how altering extracellular fluid tonicity with IVFs affects sRBC biomechanics in the microcirculation, where vaso-occlusion takes place. Here, we report how altering extracellular fluid tonicity with admixtures of clinical IVFs affects sRBC biomechanical properties by leveraging novel in vitro microfluidic models of the microcirculation, including 1 capable of deoxygenating the sRBC environment to monitor changes in microchannel occlusion risk and an "endothelialized" microvascular model that measures alterations in sRBC/endothelium adhesion under postcapillary venular conditions. Admixtures with higher tonicities (sodium = 141 mEq/L) affected sRBC biomechanics by decreasing sRBC deformability, increasing sRBC occlusion under normoxic and hypoxic conditions, and increasing sRBC adhesion in our microfluidic human microvasculature models. Admixtures with excessive hypotonicity (sodium = 103 mEq/L), in contrast, decreased sRBC adhesion, but overswelling prolonged sRBC transit times in capillary-sized microchannels. Admixtures with intermediate tonicities (sodium = 111-122 mEq/L) resulted in optimal changes in sRBC biomechanics, thereby reducing the risk for vaso-occlusion in our models. These results have significant translational implications for patients with SCD and warrant a large-scale prospective clinical study addressing optimal IVF management during VOE in SCD.


Subject(s)
Anemia, Sickle Cell/blood , Anemia, Sickle Cell/physiopathology , Erythrocyte Deformability/physiology , Extracellular Fluid/physiology , Biomechanical Phenomena , Cell Adhesion/physiology , Cells, Cultured , Erythrocytes, Abnormal/physiology , Extracellular Fluid/chemistry , Hemorheology , Human Umbilical Vein Endothelial Cells/metabolism , Human Umbilical Vein Endothelial Cells/physiology , Humans , Osmolar Concentration
7.
Nat Mater ; 16(2): 230-235, 2017 02.
Article in English | MEDLINE | ID: mdl-27723740

ABSTRACT

Haemostasis occurs at sites of vascular injury, where flowing blood forms a clot, a dynamic and heterogeneous fibrin-based biomaterial. Paramount in the clot's capability to stem haemorrhage are its changing mechanical properties, the major drivers of which are the contractile forces exerted by platelets against the fibrin scaffold. However, how platelets transduce microenvironmental cues to mediate contraction and alter clot mechanics is unknown. This is clinically relevant, as overly softened and stiffened clots are associated with bleeding and thrombotic disorders. Here, we report a high-throughput hydrogel-based platelet-contraction cytometer that quantifies single-platelet contraction forces in different clot microenvironments. We also show that platelets, via the Rho/ROCK pathway, synergistically couple mechanical and biochemical inputs to mediate contraction. Moreover, highly contractile platelet subpopulations present in healthy controls are conspicuously absent in a subset of patients with undiagnosed bleeding disorders, and therefore may function as a clinical diagnostic biophysical biomarker.


Subject(s)
Blood Coagulation/physiology , Blood Flow Velocity/physiology , Blood Platelets/physiology , Flow Cytometry/methods , Mechanotransduction, Cellular/physiology , Platelet Activation/physiology , Platelet Adhesiveness/physiology , Cells, Cultured , Elastic Modulus/physiology , Hardness/physiology , Humans , Nanoparticles/chemistry
8.
Blood ; 126(6): 817-24, 2015 Aug 06.
Article in English | MEDLINE | ID: mdl-25931587

ABSTRACT

The mechanism of action of the widely used in vivo ferric chloride (FeCl3) thrombosis model remains poorly understood; although endothelial cell denudation is historically cited, a recent study refutes this and implicates a role for erythrocytes. Given the complexity of the in vivo environment, an in vitro reductionist approach is required to systematically isolate and analyze the biochemical, mass transfer, and biological phenomena that govern the system. To this end, we designed an "endothelial-ized" microfluidic device to introduce controlled FeCl3 concentrations to the molecular and cellular components of blood and vasculature. FeCl3 induces aggregation of all plasma proteins and blood cells, independent of endothelial cells, by colloidal chemistry principles: initial aggregation is due to binding of negatively charged blood components to positively charged iron, independent of biological receptor/ligand interactions. Full occlusion of the microchannel proceeds by conventional pathways, and can be attenuated by antithrombotic agents and loss-of-function proteins (as in IL4-R/Iba mice). As elevated FeCl3 concentrations overcome protective effects, the overlap between charge-based aggregation and clotting is a function of mass transfer. Our physiologically relevant in vitro system allows us to discern the multifaceted mechanism of FeCl3-induced thrombosis, thereby reconciling literature findings and cautioning researchers in using the FeCl3 model.


Subject(s)
Blood Platelets/drug effects , Chlorides/pharmacology , Erythrocytes/drug effects , Ferric Compounds/pharmacology , Protein Aggregates/drug effects , Aspirin/pharmacology , Biomechanical Phenomena , Blood Platelets/chemistry , Blood Platelets/cytology , Cell Aggregation/drug effects , Chlorides/antagonists & inhibitors , Chlorides/chemistry , Erythrocytes/chemistry , Erythrocytes/cytology , Ferric Compounds/antagonists & inhibitors , Ferric Compounds/chemistry , Fibrinolytic Agents/pharmacology , Heparin/pharmacology , Humans , Microfluidic Analytical Techniques , Models, Biological , Platelet-Rich Plasma/chemistry , Primary Cell Culture , Protein Binding , Static Electricity , Thrombosis/metabolism , Thrombosis/pathology
9.
Blood Rev ; 29(6): 377-86, 2015 Nov.
Article in English | MEDLINE | ID: mdl-26005062

ABSTRACT

During clot formation, platelets are subjected to various different signals and cues as they dynamically interact with extracellular matrix proteins such as von Willebrand factor (vWF), fibrin(ogen) and collagen. While the downstream signaling of platelet-ligand interactions is well-characterized, biophysical cues, such as hydrodynamic forces and mechanical stiffness of the underlying substrate, also mediate these interactions and affect the binding kinetics of platelets to these proteins. Recent studies have observed that, similar to nucleated cells, platelets mechanosense their microenvironment and exhibit dynamic physiologic responses to biophysical cues. This review discusses how platelet mechanosensing is affected by the hydrodynamic forces that dictate vWF-platelet interactions and fibrin polymerization and network formation. The similarities and differences in mechanosensing between platelets and nucleated cells and integrin-mediated platelet mechanosensing on both fibrin(ogen) and collagen are then reviewed. Further studies investigating how platelets interact with the mechanical microenvironment will improve our overall understanding of the hemostatic process.


Subject(s)
Blood Platelets/chemistry , Cytoskeleton/metabolism , Mechanotransduction, Cellular , Platelet Glycoprotein GPIb-IX Complex/chemistry , von Willebrand Factor/chemistry , ADAM Proteins/genetics , ADAM Proteins/metabolism , ADAMTS13 Protein , Blood Platelets/metabolism , Cytoskeleton/ultrastructure , Fibrin/genetics , Fibrin/metabolism , Fibrinogen/genetics , Fibrinogen/metabolism , Gene Expression Regulation , Humans , Platelet Activation , Platelet Aggregation , Platelet Glycoprotein GPIIb-IIIa Complex/genetics , Platelet Glycoprotein GPIIb-IIIa Complex/metabolism , Platelet Glycoprotein GPIb-IX Complex/genetics , Platelet Glycoprotein GPIb-IX Complex/metabolism , Protein Binding , Protein Conformation , Protein Folding , von Willebrand Factor/genetics , von Willebrand Factor/metabolism
10.
Cell Rep ; 8(6): 1905-1918, 2014 Sep 25.
Article in English | MEDLINE | ID: mdl-25242334

ABSTRACT

Circulating tumor cells (CTCs) are shed from primary tumors into the bloodstream, mediating the hematogenous spread of cancer to distant organs. To define their composition, we compared genome-wide expression profiles of CTCs with matched primary tumors in a mouse model of pancreatic cancer, isolating individual CTCs using epitope-independent microfluidic capture, followed by single-cell RNA sequencing. CTCs clustered separately from primary tumors and tumor-derived cell lines, showing low-proliferative signatures, enrichment for the stem-cell-associated gene Aldh1a2, biphenotypic expression of epithelial and mesenchymal markers, and expression of Igfbp5, a gene transcript enriched at the epithelial-stromal interface. Mouse as well as human pancreatic CTCs exhibit a very high expression of stromal-derived extracellular matrix (ECM) proteins, including SPARC, whose knockdown in cancer cells suppresses cell migration and invasiveness. The aberrant expression by CTCs of stromal ECM genes points to their contribution of microenvironmental signals for the spread of cancer to distant organs.


Subject(s)
Extracellular Matrix/genetics , Gene Expression Regulation, Neoplastic , Neoplastic Cells, Circulating/metabolism , Pancreatic Neoplasms/pathology , Aldehyde Dehydrogenase 1 Family , Animals , Carrier Proteins/genetics , Carrier Proteins/metabolism , Cell Movement , Extracellular Matrix/metabolism , Humans , Mice , Osteonectin/antagonists & inhibitors , Osteonectin/genetics , Osteonectin/metabolism , Pancreatic Neoplasms/metabolism , RNA Interference , RNA, Small Interfering/metabolism , Retinal Dehydrogenase/genetics , Retinal Dehydrogenase/metabolism , Sequence Analysis, RNA , Tumor Cells, Cultured
11.
Thromb Res ; 133(4): 532-7, 2014 Apr.
Article in English | MEDLINE | ID: mdl-24440140

ABSTRACT

While the role of platelets in hemostasis is well characterized from a biological perspective, the biophysical interactions between platelets and their mechanical microenvironment are relatively unstudied. The field of cellular mechanics has developed a number of approaches to study the effects of extracellular matrix (ECM)-derived mechanical forces on various cells, and has elucidated that integrin-cytoskeleton-mediated force transduction governs many cellular processes. As platelets adhere and spread via molecular machinery that is similar to that which enables other cells to mechanosense and mechanotransduce forces from their biophysical microenvironment, platelets too are likely governed by the same overarching mechanisms. Indeed, recent platelet mechanobiology studies have revealed that key aspects of platelet physiology and activation are regulated by the mechanical and spatial properties of the ECM microenvironment. At the same time, there are also key differences that make platelets unique in the world of cells-- their size, origin as megakaryocyte fragments, and unique αIIbß3 integrin-- render their mechanosensing activities particularly interesting. The structurally "simple," anucleate nature of platelets coupled with their high actin concentration (20% of total protein) and integrin density [1] seem to make them ideal for mechanical force generation and transmission. Further studies will enhance our understanding of the role of platelet mechanobiology in hemostasis and thrombosis, potentially leading to new categories of diagnostics that investigate the mechanical properties of clots to determine bleeding risk, as well as therapies that target the mechanotransduction signaling pathway to alter the stability of clots.


Subject(s)
Blood Platelets/physiology , Mechanotransduction, Cellular/physiology , Biophysical Phenomena , Blood Platelets/cytology , Hemostasis , Humans , Microscopy, Atomic Force
12.
Sci Transl Med ; 5(179): 179ra47, 2013 Apr 03.
Article in English | MEDLINE | ID: mdl-23552373

ABSTRACT

Circulating tumor cells (CTCs) are shed into the bloodstream from primary and metastatic tumor deposits. Their isolation and analysis hold great promise for the early detection of invasive cancer and the management of advanced disease, but technological hurdles have limited their broad clinical utility. We describe an inertial focusing-enhanced microfluidic CTC capture platform, termed "CTC-iChip," that is capable of sorting rare CTCs from whole blood at 10(7) cells/s. Most importantly, the iChip is capable of isolating CTCs using strategies that are either dependent or independent of tumor membrane epitopes, and thus applicable to virtually all cancers. We specifically demonstrate the use of the iChip in an expanded set of both epithelial and nonepithelial cancers including lung, prostate, pancreas, breast, and melanoma. The sorting of CTCs as unfixed cells in solution allows for the application of high-quality clinically standardized morphological and immunohistochemical analyses, as well as RNA-based single-cell molecular characterization. The combination of an unbiased, broadly applicable, high-throughput, and automatable rare cell sorting technology with generally accepted molecular assays and cytology standards will enable the integration of CTC-based diagnostics into the clinical management of cancer.


Subject(s)
Antigens, Neoplasm/metabolism , Cell Separation/methods , Microfluidics/methods , Neoplastic Cells, Circulating/pathology , Cell Line, Tumor , Cell Shape , Cell Size , Female , Humans , Magnetic Phenomena , Male , RNA, Neoplasm/metabolism
13.
J Cell Mol Med ; 17(5): 579-96, 2013 May.
Article in English | MEDLINE | ID: mdl-23490277

ABSTRACT

Although the processes of haemostasis and thrombosis have been studied extensively in the past several decades, much of the effort has been spent characterizing the biological and biochemical aspects of clotting. More recently, researchers have discovered that the function and physiology of blood cells and plasma proteins relevant in haematologic processes are mechanically, as well as biologically, regulated. This is not entirely surprising considering the extremely dynamic fluidic environment that these blood components exist in. Other cells in the body such as fibroblasts and endothelial cells have been found to biologically respond to their physical and mechanical environments, affecting aspects of cellular physiology as diverse as cytoskeletal architecture to gene expression to alterations of vital signalling pathways. In the circulation, blood cells and plasma proteins are constantly exposed to forces while they, in turn, also exert forces to regulate clot formation. These mechanical factors lead to biochemical and biomechanical changes on the macro- to molecular scale. Likewise, biochemical and biomechanical alterations in the microenvironment can ultimately impact the mechanical regulation of clot formation. The ways in which these factors all balance each other can be the difference between haemostasis and thrombosis. Here, we review how the biomechanics of blood cells intimately interact with the cellular and molecular biology to regulate haemostasis and thrombosis in the context of health and disease from the macro- to molecular scale. We will also show how these biomechanical forces in the context of haemostasis and thrombosis have been replicated or measured in vitro.


Subject(s)
Health , Hemostasis , Thrombosis/physiopathology , Animals , Biomechanical Phenomena , Erythrocytes/metabolism , Humans , Thrombosis/blood
14.
Science ; 339(6119): 580-4, 2013 Feb 01.
Article in English | MEDLINE | ID: mdl-23372014

ABSTRACT

Epithelial-mesenchymal transition (EMT) of adherent epithelial cells to a migratory mesenchymal state has been implicated in tumor metastasis in preclinical models. To investigate its role in human cancer, we characterized EMT in circulating tumor cells (CTCs) from breast cancer patients. Rare primary tumor cells simultaneously expressed mesenchymal and epithelial markers, but mesenchymal cells were highly enriched in CTCs. Serial CTC monitoring in 11 patients suggested an association of mesenchymal CTCs with disease progression. In an index patient, reversible shifts between these cell fates accompanied each cycle of response to therapy and disease progression. Mesenchymal CTCs occurred as both single cells and multicellular clusters, expressing known EMT regulators, including transforming growth factor (TGF)-ß pathway components and the FOXC1 transcription factor. These data support a role for EMT in the blood-borne dissemination of human breast cancer.


Subject(s)
Breast Neoplasms/pathology , Epithelial-Mesenchymal Transition , Neoplastic Cells, Circulating/pathology , Animals , Biomarkers, Tumor/genetics , Biomarkers, Tumor/metabolism , Breast Neoplasms/blood , Breast Neoplasms/genetics , Cell Count , Cell Movement , Epithelial Cells/pathology , Female , Gene Expression Regulation, Neoplastic , Humans , Mesoderm/pathology , Mice , Neoplasm Transplantation , Neoplastic Cells, Circulating/metabolism , RNA, Neoplasm/chemistry , RNA, Neoplasm/genetics , Transcription, Genetic , Transforming Growth Factor beta/genetics , Transforming Growth Factor beta/metabolism
15.
Nature ; 487(7408): 510-3, 2012 Jul 26.
Article in English | MEDLINE | ID: mdl-22763454

ABSTRACT

Circulating tumour cells (CTCs) shed into blood from primary cancers include putative precursors that initiate distal metastases. Although these cells are extraordinarily rare, they may identify cellular pathways contributing to the blood-borne dissemination of cancer. Here, we adapted a microfluidic device for efficient capture of CTCs from an endogenous mouse pancreatic cancer model and subjected CTCs to single-molecule RNA sequencing, identifying Wnt2 as a candidate gene enriched in CTCs. Expression of WNT2 in pancreatic cancer cells suppresses anoikis, enhances anchorage-independent sphere formation, and increases metastatic propensity in vivo. This effect is correlated with fibronectin upregulation and suppressed by inhibition of MAP3K7 (also known as TAK1) kinase. In humans, formation of non-adherent tumour spheres by pancreatic cancer cells is associated with upregulation of multiple WNT genes, and pancreatic CTCs revealed enrichment for WNT signalling in 5 out of 11 cases. Thus, molecular analysis of CTCs may identify candidate therapeutic targets to prevent the distal spread of cancer.


Subject(s)
Gene Expression Regulation, Neoplastic/genetics , Neoplasm Metastasis/genetics , Neoplastic Cells, Circulating/metabolism , Pancreatic Neoplasms/genetics , Pancreatic Neoplasms/pathology , Wnt Proteins/metabolism , Wnt Signaling Pathway/genetics , Animals , Cell Survival , Contact Inhibition , Disease Models, Animal , Genes, Neoplasm/genetics , Humans , MAP Kinase Kinase Kinases/antagonists & inhibitors , Mice , RNA, Messenger/analysis , RNA, Messenger/biosynthesis , Sequence Analysis, RNA , Wnt Proteins/genetics , Wnt2 Protein/genetics , Wnt2 Protein/metabolism
16.
Anal Chem ; 84(8): 3682-8, 2012 Apr 17.
Article in English | MEDLINE | ID: mdl-22414137

ABSTRACT

Microfluidic systems for affinity-based cell isolation have emerged as a promising approach for the isolation of specific cells from complex matrices (i.e., circulating tumor cells in whole blood). However, these technologies remain limited by the lack of reliable methods for the innocuous recovery of surface captured cells. Here, we present a biofunctional sacrificial hydrogel coating for microfluidic chips that enables the highly efficient release of isolated cells (99% ± 1%) following gel dissolution. This covalently cross-linked alginate biopolymer system is stable in a wide variety of physiologic solutions (including EDTA treated whole blood) and may be rapidly degraded via backbone cleavage with alginate lyase. The capture and release of EpCAM expressing cancer cells using this approach was found to have no significant effect on cell viability or proliferative potential, and recovered cells were demonstrated to be compatible with downstream immunostaining and FISH analysis.


Subject(s)
Alginates/chemistry , Biopolymers/chemistry , Cell Tracking , Hydrogel, Polyethylene Glycol Dimethacrylate/chemistry , Carbohydrate Sequence , Cell Line, Tumor , Cell Survival , Female , Humans , Male , Microfluidic Analytical Techniques , Molecular Sequence Data , Molecular Structure , Surface Properties
SELECTION OF CITATIONS
SEARCH DETAIL
...