Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Phys Chem A ; 118(51): 12184-91, 2014 Dec 26.
Article in English | MEDLINE | ID: mdl-25405612

ABSTRACT

We describe the use of cadmium telluride quantum dots (CdTe QDs) as antennas for the photosensitization of nitric oxide release from a ruthenium nitrosyl complex with visible light excitation. The CdTe QDs were capped with mercaptopropionic acid to make them water-soluble, and the ruthenium nitrosyl complex was cis-[Ru(NO)(4-ampy)(bpy)2](3+) (Ru-NO; bpy is 2,2'-bipyridine, and 4-ampy is 4-aminopyridine). Solutions of these two components demonstrated concentration-dependent quenching of the QD photoluminescence (PL) as well as photoinduced release of NO from Ru-NO when irradiated by 530 nm light. A NO release enhancement of ∼8 times resulting from this association was observed under longer wavelength excitation in visible light range. The dynamics of the quenching determined by both PL and transient absorption measurements were probed by ultrafast flash photolysis. A charge transfer mechanism is proposed to explain the quenching of the QD excited states as well as the photosensitized release of NO from Ru-NO.


Subject(s)
Nitrogen Oxides/chemistry , Photochemical Processes , Quantum Dots/chemistry , Ruthenium/chemistry , Cadmium Compounds/chemistry , Tellurium/chemistry
2.
J Drug Deliv ; 2011: 936438, 2011.
Article in English | MEDLINE | ID: mdl-21869934

ABSTRACT

Nitric oxide (NO) is a promising pharmaceutical agent that has vasodilative, antibacterial, and tumoricidal effects. To study the complex and wide-ranging roles of NO and to facilitate its therapeutic use, a great number of synthetic compounds (e.g., nitrosothiols, nitrosohydroxyamines, N-diazeniumdiolates, and nitrosyl metal complexes) have been developed to chemically stabilize and release NO in a controlled manner. Although NO is currently being exploited in many biomedical applications, its use is limited by several factors, including a short half-life, instability during storage, and potential toxicity. Additionally, efficient methods of both localized and systemic in vivo delivery and dose control are needed. One strategy for addressing these limitations and thus increasing the utility of NO donors is based on nanotechnology.

SELECTION OF CITATIONS
SEARCH DETAIL
...