Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 25
Filter
1.
JOR Spine ; 7(2): e1329, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38800643

ABSTRACT

Background: Chronic discogenic low back pain (LBP) poses a significant global burden, yet effective therapeutic interventions directly targeting the underlying degenerative process remain elusive. After demonstrating promising results in preclinical studies, intradiscal injection of cell-based treatments has been increasingly investigated in the clinical setting. However, most clinical trials failed to reach publication, with the few available reports showing only minor improvements. The aim of this study was to analyze the prospective clinical trials registered on ClinicalTrials.gov investigating cell therapies for LBP, with a specific emphasis on identifying critical obstacles hindering study completion, including trial design and funding sources. Methods: A systematic search of prospective clinical trials investigating cell-based treatments for chronic LBP due to intervertebral disc degeneration was performed on ClinicalTrials.gov. Extracted data encompassed study design, recruitment, experimental treatment modalities, investigated outcomes, current status, completion date, publication status, and funding sources. Fisher's exact test assessed associations between categorical variables, while a multiple logistic regression model aimed to identify factors potentially linked to the publication status of the studies. Results: Our search identified 26 clinical trials. Among these, only 7 (26.9%) were published, and none of the other studies marked as completed reported any results on ClinicalTrials.gov. Fifty percent of included trials were funded by universities, whereas the rest was sponsored by industry (38.5%) or private institutions (11.5%). Experimental treatments primarily involved cell-based or cell-derived products of varying sources and concentrations. Products containing carriers, such as hyaluronic acid or fibrin, were more frequently funded by industry and private organizations (p = 0.0112). No significant differences emerged when comparing published and nonpublished studies based on funding, as well as between publication status and other variables. Conclusion: Most clinical trials exploring cell-based disc regenerative therapies for chronic LBP have never reached completion, with only a small fraction reporting preliminary data in publications.

2.
Eur Spine J ; 33(5): 1713-1727, 2024 May.
Article in English | MEDLINE | ID: mdl-38416190

ABSTRACT

PURPOSE: To investigate the therapeutic potential of extracellular vesicles (EVs) derived from human nucleus pulposus cells (NPCs), with a specific emphasis on Tie2-enhanced NPCs, compared to EVs derived from human bone marrow-derived mesenchymal stromal cells (BM-MSCs) in a coccygeal intervertebral disc degeneration (IDD) rat model. METHODS: EVs were isolated from healthy human NPCs cultured under standard (NPCSTD-EVs) and Tie2-enhancing (NPCTie2+-EVs) conditions. EVs were characterized, and their potential was assessed in vitro on degenerative NPCs in terms of cell proliferation and senescence, with or without 10 ng/mL interleukin (IL)-1ß. Thereafter, 16 Sprague-Dawley rats underwent annular puncture of three contiguous coccygeal discs to develop IDD. Phosphate-buffered saline, NPCSTD-EVs, NPCTie2+-EVs, or BM-MSC-derived EVs were injected into injured discs, and animals were followed for 12 weeks until sacrifice. Behavioral tests, radiographic disc height index (DHI) measurements, evaluation of pain biomarkers, and histological analyses were performed to assess the outcomes of injected EVs. RESULTS: NPC-derived EVs exhibited the typical exosomal morphology and were efficiently internalized by degenerative NPCs, enhancing cell proliferation, and reducing senescence. In vivo, a single injection of NPC-derived EVs preserved DHI, attenuated degenerative changes, and notably reduced mechanical hypersensitivity. MSC-derived EVs showed marginal improvements over sham controls across all measured outcomes. CONCLUSION: Our results underscore the regenerative potential of young NPC-derived EVs, particularly NPCTie2+-EVs, surpassing MSC-derived counterparts. These findings raise questions about the validity of MSCs as both EV sources and cellular therapeutics against IDD. The study emphasizes the critical influence of cell type, source, and culture conditions in EV-based therapeutics.


Subject(s)
Extracellular Vesicles , Intervertebral Disc Degeneration , Mesenchymal Stem Cells , Nucleus Pulposus , Rats, Sprague-Dawley , Animals , Intervertebral Disc Degeneration/therapy , Extracellular Vesicles/transplantation , Extracellular Vesicles/metabolism , Mesenchymal Stem Cells/physiology , Nucleus Pulposus/metabolism , Rats , Humans , Male , Cells, Cultured , Pain
3.
JOR Spine ; 7(1): e1274, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38222813

ABSTRACT

Background: Intradiscal transplantation of mesenchymal stromal cells (MSCs) has emerged as a promising therapy for intervertebral disc degeneration (IDD). However, the hostile microenvironment of the intervertebral disc (IVD) may compromise the survival of implanted cells. Interestingly, studies reported that paracrine factors, such as extracellular vesicles (EVs) released by MSCs, may regenerate the IVD. The aim of this study was to investigate the therapeutic effects of Wharton's Jelly MSC (WJ-MSC)-derived EVs on human nucleus pulposus cells (hNPCs) using an in vitro 3D alginate-bead culture model. Methods: After EV isolation and characterization, hNPCs isolated from surgical specimens were encapsulated in alginate beads and treated with 10, 50, and 100 µg/mL WJ-MSC-EVs. Cell proliferation and viability were assessed by flow cytometry and live/dead staining. Nitrite and glycosaminoglycan (GAG) content was evaluated through Griess and 1,9-dimethylmethylene blue assays. hNPCs in alginate beads were paraffin-embedded and stained for histological analysis (hematoxylin-eosin and Alcian blue) to assess extracellular matrix (ECM) composition. Gene expression levels of catabolic (MMP1, MMP13, ADAMTS5, IL6, NOS2), anabolic (ACAN), and hNPC marker (SOX9, KRT19) genes were analyzed through qPCR. Collagen type I and type II content was assessed with Western blot analysis. Results: Treatment with WJ-MSC-EVs resulted in an increase in cell content and a decrease in cell death in degenerated hNPCs. Nitrite production was drastically reduced by EV treatment compared to the control. Furthermore, proteoglycan content was enhanced and confirmed by Alcian blue histological staining. EV stimulation attenuated ECM degradation and inflammation by suppressing catabolic and inflammatory gene expression levels. Additionally, NPC phenotypic marker genes were also maintained by the EV treatment. Conclusions: WJ-MSC-derived EVs ameliorated hNPC growth and viability, and attenuated ECM degradation and oxidative stress, offering new opportunities for IVD regeneration as an attractive alternative strategy to cell therapy, which may be jeopardized by the harsh microenvironment of the IVD.

4.
J Orthop Res ; 41(10): 2195-2204, 2023 10.
Article in English | MEDLINE | ID: mdl-37132159

ABSTRACT

Tendinopathy is one of the most common musculoskeletal disorders with significant repercussions on quality of life and sport activities. Physical exercise (PE) is considered the first-line approach to treat tendinopathy due renowned mechanobiological effects on tenocytes. Irisin, a recently identified myokine released during PE, has been recognized for several beneficial effects towards muscle, cartilage, bone, and intervertebral disc tissues. The aim of this study was to evaluate the effects of irisin on human primary tenocytes (hTCs) in vitro. Human tendons were harvested from specimens of patients undergoing anterior cruciate ligament reconstruction (n = 4). After isolation and expansion, hTCs were treated with RPMI medium (negative control), interleukin (IL)-1ß or tumor necrosis factor-α (TNF-α) (positive controls; 10 ng/mL), irisin (5, 10, 25 ng/mL), IL-1ß or TNF-α pretreatment and subsequent co-treatment with irisin, pretreatment with irisin and subsequent co-treatment with IL-1ß or TNF-α. hTC metabolic activity, proliferation, and nitrite production were evaluated. Detection of unphosphorylated and phosphorylated p38 and ERK was performed. Tissue samples were analyzed by histology and immunohistochemistry to evaluate irisin αVß5 receptor expression. Irisin significantly increased hTC proliferation and metabolic activity, while reducing the production of nitrites both before and after the addition of IL-1ß and TNF-α. Interestingly, irisin reduced p-p38 and pERK levels in inflamed hTCs. The αVß5 receptor was uniformly expressed on hTC plasma membranes, supporting the potential binding of irisin. This is the first study reporting the capacity of irisin to target hTCs and modulating their response to inflammatory stresses, possibly orchestrating a biological crosstalk between the muscle and tendon.


Subject(s)
Fibronectins , Tendinopathy , Humans , Fibronectins/metabolism , Tumor Necrosis Factor-alpha/metabolism , Tenocytes/metabolism , Quality of Life , Tendons/pathology , Inflammation/metabolism , Tendinopathy/metabolism , Muscles/pathology
5.
Front Bioeng Biotechnol ; 11: 1152207, 2023.
Article in English | MEDLINE | ID: mdl-37008028

ABSTRACT

Introduction: Intradiscal mesenchymal stromal cell (MSC) therapies for intervertebral disc degeneration (IDD) have been gaining increasing interest due to their capacity to ameliorate intervertebral disc metabolism and relieve low back pain (LBP). Recently, novel investigations have demonstrated that most of MSC anabolic effects are exerted by secreted growth factors, cytokines, and extracellular vesicles, collectively defined as their secretome. In this study, we aimed to evaluate the effect of bone-marrow-MSCs (BM-MSCs) and adipose-derived stromal cells (ADSCs) secretomes on human nucleus pulposus cells (hNPCs) in vitro. Methods: BM-MSCs and ADSCs were characterized according to surface marker expression by flow cytometry and multilineage differentiation by Alizarin red, Red Oil O and Alcian blue staining. After isolation, hNPCs were treated with either BM-MSC secretome, ADSC secretome, interleukin (IL)-1ß followed by BM-MSC secretome or IL-1ß followed by ADSC secretome. Cell metabolic activity (MTT assay), cell viability (LIVE/DEAD assay), cell content, glycosaminoglycan production (1,9-dimethylmethylene blue assay), extracellular matrix and catabolic marker gene expression (qPCR) were assessed. Results: 20% BM-MSC and ADSC secretomes (diluted to normal media) showed to exert the highest effect towards cell metabolism and were then used in further experiments. Both BM-MSC and ADSC secretomes improved hNPC viability, increased cell content and enhanced glycosaminoglycan production in basal conditions as well as after IL-1ß pretreatment. BM-MSC secretome significantly increased ACAN and SOX9 gene expression, while reducing the levels of IL6, MMP13 and ADAMTS5 both in basal conditions and after in vitro inflammation with IL-1ß. Interestingly, under IL-1ß stimulation, ADSC secretome showed a catabolic effect with decreased extracellular matrix markers and increased levels of pro-inflammatory mediators. Discussion: Collectively, our results provide new insights on the biological effect of MSC-derived secretomes on hNPCs, with intriguing implications on the development of cell-free approaches to treat IDD.

6.
Front Bioeng Biotechnol ; 11: 911600, 2023.
Article in English | MEDLINE | ID: mdl-36733959

ABSTRACT

Introduction: Adipose tissue is widely exploited in regenerative medicine thanks to its trophic properties, mainly based on the presence of adipose-derived stromal cells. Numerous devices have been developed to promote its clinical use, leading to the introduction of one-step surgical procedures to obtain minimally manipulated adipose tissue derivatives. However, only a few studies compared their biological properties. This study aimed to characterize micro-fragmented (MAT) and nanofat adipose tissue (NAT) obtained with two different techniques. Methods: MAT, NAT and unprocessed lipoaspirate were collected from surgical specimens. RNA extraction and collagenase isolation of stromal vascular fraction (SVF) were performed. Tissue sections were analysed by histological and immunohistochemical (collagen type I, CD31, CD34 and PCNA) staining to assess tissue morphology and cell content. qPCR was performed to evaluate the expression of stemness-related (SOX2, NANOG and OCT3/4), extracellular matrix (COL1A1) and inflammatory genes (IL1ß, IL6 and iNOS). Furthermore, multilineage differentiation was assessed following culture in adipogenic and osteogenic media and staining with Oil Red O and Alizarin red. ASC immunophenotype was assessed by flow cytometric analysis of CD90, CD105, CD73 and CD45. Results: Histological and immunohistochemical results showed an increased amount of stroma and a reduction of adipocytes in MAT and NAT, with the latter displaying the highest content of collagen type I, CD31, CD34 and PCNA. From LA to MAT and NAT, an increasing expression of NANOG, SOX2, OCT3/4, COL1A1 and IL6 was noted, while no significant differences in terms of IL1ß and iNOS emerged. No statistically significant differences were noted between NAT and SVF in terms of stemness-related genes, while the latter demonstrated a significantly higher expression of stress-related markers. SVF cells derived from all three samples (LA, MAT, and NAT) showed a similar ASC immunoprofile as well as osteogenic and adipogenic differentiation. Discussion: Our results showed that both MAT and NAT techniques allowed the rapid isolation of ASC-rich grafts with a high anabolic and proliferative potential. However, NAT showed the highest levels of extracellular matrix content, replicating cells, and stemness gene expression. These results may provide precious clues for the use of adipose tissue derivatives in the clinical setting.

7.
Spine (Phila Pa 1976) ; 48(7): 468-475, 2023 Apr 01.
Article in English | MEDLINE | ID: mdl-36149858

ABSTRACT

STUDY DESIGN: In vitro study. OBJECTIVE: To investigate the effect of irisin on human nucleus pulposus cells (hNPCs) in vitro. SUMMARY OF BACKGROUND DATA: Physical exercise (PE) favours weight loss and ameliorates function in patients with low back pain. Although there is no biological evidence that the intervertebral disk (IVD) can respond to PE, recent studies have shown that running is associated with increased IVD hydration and hypertrophy. Irisin, a myokine released upon muscle contraction, has demonstrated anabolic effects on different cell types, including chondrocytes. MATERIALS AND METHODS: hNPCs were exposed to 5, 10, and 25 ng/mL irisin. Cell proliferation, glycosaminoglycan (GAG) content, metabolic activity, gene expression of collagen type II (COL2), matrix metalloproteinase (MMP)-13, tissue inhibitor of matrix metalloproteinase (TIMP)-1 and TIMP-3, aggrecan (ACAN), interleukin (IL)-1ß, a disintegrin and metalloproteinase with thrombospondin motifs (ADAMTS)-5 were assessed. In addition, MTT assay and ADAMTS-5, COL2, TIMP-1, and IL-1ß gene expression were evaluated following incubation with irisin for 24 hours and subsequent culture with 10 ng/mL IL-1ß and vice versa (incubation for 24 hours with IL-1ß and subsequent culture with irisin). RESULTS: Irisin increased hNPC proliferation, metabolic activity, and GAG content, as well as COL2, ACAN, TIMP-1 and TIMP-3 gene expression, while decreasing MMP-13 and IL-1ß mRNA levels. Irisin pretreatment of hNPCs cultured in proinflammatory conditions resulted in a rescue of metabolic activity and a decrease of IL-1ß levels. Similarly, incubation of hNPCs with IL-1ß and subsequent exposure to irisin led to an increment of metabolic activity, COL2 gene expression, and a reduction of IL-1ß and ADAMTS-5 levels. CONCLUSIONS: Irisin increases hNPC proliferation, GAG content, metabolic activity, and promotes anabolic gene expression while reducing catabolic markers. Irisin may be one of the mediators by which PE and muscle tissues modulate IVD metabolism, suggesting the existence of a biological cross-talk between the muscle and IVD.


Subject(s)
Intervertebral Disc Degeneration , Intervertebral Disc , Nucleus Pulposus , Humans , Nucleus Pulposus/metabolism , Fibronectins/metabolism , Fibronectins/pharmacology , Tissue Inhibitor of Metalloproteinase-3/metabolism , Tissue Inhibitor of Metalloproteinase-3/pharmacology , Intervertebral Disc Degeneration/metabolism , Tissue Inhibitor of Metalloproteinase-1/metabolism , Tissue Inhibitor of Metalloproteinase-1/pharmacology , Intervertebral Disc/metabolism , Aggrecans/genetics , Aggrecans/metabolism , Muscles/metabolism , Matrix Metalloproteinases/metabolism , Matrix Metalloproteinases/pharmacology , Cells, Cultured , Interleukin-1beta/metabolism
8.
Antibiotics (Basel) ; 10(9)2021 Sep 08.
Article in English | MEDLINE | ID: mdl-34572669

ABSTRACT

Knee septic arthritis is a devastating complication following anterior cruciate ligament (ACL) reconstruction. To prevent this issue, intraoperative soaking of ACL grafts with vancomycin is often performed before implantation. Although vancomycin cytotoxicity has been reported several times, little is known about its biological effect on tenocytes. The aim of this study was to evaluate the in vitro effects of vancomycin on human primary tenocytes (hTCs). hTCs were isolated from hamstring grafts of four patients undergoing ACL reconstruction. After expansion, hTCs were treated with different concentrations of vancomycin (0, 2.5, 5, 10, 25, 50 and 100 mg/mL) for 10, 15, 30 and 60 min. In vitro cytotoxicity was evaluated measuring metabolic activity, cell toxicity, and apoptosis. hTC metabolic activity was affected starting from 10 mg/mL vancomycin and decreased markedly at 100 mg/mL. Cell viability remained unaffected only at a concentration of 2.5 mg/mL vancomycin. Vancomycin cytotoxicity was detected from 10 mg/mL after 15 min and at all higher concentrations. Cells died when treated with concentrations higher than 5 mg/mL. The use of this antibiotic on tendons to prevent infections could be useful and safe for resident cells if used at a concentration of 2.5 mg/mL for up to 1 h of treatment.

9.
JOR Spine ; 4(2): e1167, 2021 Jun.
Article in English | MEDLINE | ID: mdl-34337340

ABSTRACT

BACKGROUND: Histopathological analysis of intervertebral disc (IVD) tissues is a critical domain of back pain research. Identification, description, and classification of attributes that distinguish abnormal tissues form a basis for probing disease mechanisms and conceiving novel therapies. Unfortunately, lack of standardized methods and nomenclature can limit comparisons of results across studies and prevent organizing information into a clear representation of the hierarchical, spatial, and temporal patterns of IVD degeneration. Thus, the following Orthopaedic Research Society (ORS) Spine Section Initiative aimed to develop a standardized histopathology scoring scheme for human IVD degeneration. METHODS: Guided by a working group of experts, this prospective process entailed a series of stages that consisted of reviewing and assessing past grading schemes, surveying IVD researchers globally on current practice and recommendations for a new grading system, utilizing expert opinion a taxonomy of histological grading was developed, and validation performed. RESULTS: A standardized taxonomy was developed, which showed excellent intra-rater reliability for scoring nucleus pulposus (NP), annulus fibrosus (AF), and cartilaginous end plate (CEP) regions (interclass correlation [ICC] > .89). The ability to reliably detect subtle changes varied by IVD region, being poorest in the NP (ICC: .89-.95) where changes at the cellular level were important, vs the AF (ICC: .93-.98), CEP (ICC: .97-.98), and boney end plate (ICC: .96-.99) where matrix and structural changes varied more dramatically with degeneration. CONCLUSIONS: The proposed grading system incorporates more comprehensive descriptions of degenerative features for all the IVD sub-tissues than prior criteria. While there was excellent reliability, our results reinforce the need for improved training, particularly for novice raters. Future evaluation of the proposed system in real-world settings (eg, at the microscope) will be needed to further refine criteria and more fully evaluate utility. This improved taxonomy could aid in the understanding of IVD degeneration phenotypes and their association with back pain.

10.
Cells ; 9(6)2020 06 17.
Article in English | MEDLINE | ID: mdl-32560375

ABSTRACT

Physical exercise favors weight loss and ameliorates articular pain and function in patients suffering from osteoarthritis. Irisin, a myokine released upon muscle contraction, has demonstrated to yield anabolic effects on different cell types. This study aimed to investigate the effect of irisin on human osteoarthritic chondrocytes (hOAC) in vitro. Our hypothesis was that irisin would improve hOAC metabolism and proliferation. Cells were cultured in growing media and then exposed to either phosphate-buffered saline (control group) or human recombinant irisin (experimental group). Cell proliferation, glycosaminoglycan content, type II/X collagen gene expression and protein quantification as well as p38/extracellular signal-regulated kinase (ERK) mitogen-activated protein kinase (MAPK), protein kinase B (Akt), c-Jun N-terminal kinase (JNK), and nuclear factor kappa-light-chain-enhancer of activated B cells (NFκB) involvement were evaluated. Furthermore, gene expression of interleukin (IL)-1 and -6, matrix metalloproteinase (MMP)-1 and -13, inducible nitric oxide synthase (iNOS), and tissue inhibitor of matrix metalloproteinases (TIMP)-1 and -3 were investigated following irisin exposure. Irisin increased hOAC cell content and both type II collagen gene expression and protein levels, while decreased type X collagen gene expression and protein levels. Moreover, irisin decreased IL-1, IL-6, MMP-1, MMP-13 and iNOS gene expression, while increased TIMP-1 and TIMP-3 levels. These effects seemed to be mediated by inhibition of p38, Akt, JNK and NFκB signaling pathways. The present study suggested that irisin may stimulate hOAC proliferation and anabolism inhibiting catabolism through p38, Akt, JNK, and NFκB inactivation in vitro, demonstrating the existence of a cross-talk between muscle and cartilage.


Subject(s)
Chondrocytes/cytology , Fibronectins/metabolism , Osteoarthritis/metabolism , Signal Transduction/physiology , Extracellular Signal-Regulated MAP Kinases/metabolism , Humans , JNK Mitogen-Activated Protein Kinases/metabolism , JNK Mitogen-Activated Protein Kinases/pharmacology , Nitric Oxide Synthase Type II/metabolism , p38 Mitogen-Activated Protein Kinases/metabolism
11.
J Headache Pain ; 20(1): 61, 2019 May 27.
Article in English | MEDLINE | ID: mdl-31132992

ABSTRACT

BACKGROUND: Perturbation of neuronal excitability contributes to migraine. Neurosteroids modulate the activity of γ-aminobutyric acid A and N-methyl-d-aspartate receptors, and might be involved in the pathogenesis of migraine. Here, we measured plasma levels of four neurosteroids, i.e., allopregnanolone, epiallopregnanolone, dehydroepiandrosterone and deydroepiandrosterone sulfate, in patients affected by episodic migraine, chronic migraine, or cluster headache. METHODS: Nineteen female patients affected by episodic migraine, 51 female patients affected by chronic migraine, and 18 male patients affected by cluster headache were recruited to the study. Sex- and age-matched healthy control subjects (31 females and 16 males) were also recruited. Patients were clinically characterized by using validated questionnaires. Plasma neurosteroid levels were measured by liquid chromatography-tandem mass spectrometry. RESULTS: We found disease-specific changes in neurosteroid levels in our study groups. For example, allopregnanolone levels were significantly increased in episodic migraine and chronic migraine patients than in control subjects, whereas they were reduced in patients affected by cluster headache. Dehydroepiandrosterone and dehydroepiandrosterone sulfate levels were reduced in patients affected by chronic migraine, but did not change in patients affected by cluster headache. CONCLUSION: We have shown for the first time that large and disease-specific changes in circulating neurosteroid levels are associated with chronic headache disorders, raising the interesting possibility that fluctuations of neurosteroids at their site of action might shape the natural course of migraine and cluster headache. Whether the observed changes in neurosteroids are genetically determined or rather result from exposure to environmental or intrinsic stressors is unknown. This might also be matter for further investigation because stress is a known triggering factor for headache attacks in both migraineurs and cluster headache patients.


Subject(s)
Cluster Headache/blood , Cluster Headache/diagnosis , Migraine Disorders/blood , Migraine Disorders/diagnosis , Neurotransmitter Agents/blood , Adult , Aged , Biomarkers/blood , Cross-Sectional Studies , Female , Humans , Male , Middle Aged
12.
Biomed Mater ; 13(5): 055006, 2018 07 03.
Article in English | MEDLINE | ID: mdl-29869614

ABSTRACT

Three-dimensional (3D) tissue models offer new tools in the study of diseases. In the case of the engineering of cardiac muscle, a realistic goal would be the design of a scaffold able to replicate the tissue-specific architecture, mechanical properties, and chemical composition, so that it recapitulates the main functions of the tissue. This work is focused on the design and preliminary biological validation of an innovative polyester urethane (PUR) scaffold mimicking cardiac tissue properties. The porous scaffold was fabricated by thermally induced phase separation (TIPS) from poly(ε-caprolactone) diol, 1,4-butanediisocyanate, and l-lysine ethyl ester. Morphological and mechanical scaffolds characterization was accomplished by confocal microscopy, and micro-tensile and compression techniques. Scaffolds were then functionalized with fibronectin by plasma treatment, and the surface treatment was studied by x-ray photoelectron spectroscopy, attenuated total reflectance Fourier transform infrared spectra, and contact angle measurements. Primary rat neonatal cardiomyocytes were seeded on scaffolds, and their colonization, survival, and beating activity were analyzed for 14 days. Signal transduction pathways and apoptosis involved in cells, the structural development of the heart, and its metabolism were analyzed. PUR scaffolds showed a porous-aligned structure and mechanical properties consistent with that of the myocardial tissue. Cardiomyocytes plated on the scaffolds showed a high survival rate and a stable beating activity. Serine/threonine kinase (AKT) and extracellular signal-regulated kinases (ERK) phosphorylation was higher in cardiomyocytes cultured on the PUR scaffold compared to those on tissue culture plates. Real-time polymerase chain reaction analysis showed a significant modulation at 14 days of cardiac muscle (MYH7, prepro-ET-1), hypertrophy-specific (CTGF), and metabolism-related (SLC2a1, PFKL) genes in PUR scaffolds.


Subject(s)
Biomimetics , Butanes/chemistry , Lysine/chemistry , Myocytes, Cardiac/metabolism , Nitriles/chemistry , Polyesters/chemistry , Polyurethanes/chemistry , Animals , Apoptosis , Cells, Cultured , Compressive Strength , Fibronectins/metabolism , Humans , Imaging, Three-Dimensional , Microscopy, Confocal , Myocardium/metabolism , Myocytes, Cardiac/cytology , Nanofibers/chemistry , Rats , Rats, Sprague-Dawley , Signal Transduction , Spectrophotometry, Infrared , Spectroscopy, Fourier Transform Infrared , Tensile Strength , Tissue Engineering/methods , Tissue Scaffolds
13.
Electrophoresis ; 37(7-8): 1015-26, 2016 Apr.
Article in English | MEDLINE | ID: mdl-26719138

ABSTRACT

The lipoaspirate fluid (LAF) is emerging as a potentially valuable source in regenerative medicine. In particular, our group recently demonstrated that it is able to exert osteoinductive properties in vitro. This original observation stimulated the investigation of the proteomic component of LAF, by means of LC-ESI-LTQ-Orbitrap-MS top-down/bottom-up integrated approach, which represents the object of the present study. Top-down analyses required the optimization of sample pretreatment procedures to enable the correct investigation of the intact proteome. Bottom-up analyses have been directly applied to untreated samples after monodimensional SDS-PAGE separation. The analysis of the acid-soluble fraction of LAF by top-down approach allowed demonstrating the presence of albumin and hemoglobin fragments (i.e. VV- and LVV-hemorphin-7), thymosins ß4 and ß10 peptides, ubiquitin and acyl-CoA binding protein; adipogenesis regulatory factor, perilipin-1 fragments, and S100A6, along with their PTMs. Part of the bottom-up proteomic profile was reproducibly found in both tested samples. The bottom-up approach allowed demonstrating the presence of proteins, listed among the components of adipose tissue and/or comprised within the ASCs intracellular content and secreted proteome. Our data provide a first glance on the LAF molecular profile, which is consistent with its tissue environment. LAF appeared to contain bioactive proteins, peptides and paracrine factors, suggesting its potential translational exploitation.


Subject(s)
Adipose Tissue/chemistry , Body Fluids/chemistry , Lipectomy , Proteome/analysis , Regenerative Medicine , Adipose Tissue/cytology , Body Fluids/cytology , Chromatography, Liquid/methods , Female , Humans , Mass Spectrometry/methods , Proteome/chemistry , Proteome/classification , Proteomics/methods
14.
Plast Reconstr Surg ; 137(4): 1157-1167, 2016 Apr.
Article in English | MEDLINE | ID: mdl-26741887

ABSTRACT

BACKGROUND: Adipose tissue harvested through lipoaspiration is widely exploited in plastic and cosmetic surgery, because of its remarkable trophic properties, especially relying on the presence of adipose-derived stem cells. The common procedures for adipose-derived stem cell isolation are mainly based on tissue fractionation and enzymatic digestion, requiring multiple hours of uninterrupted work, unsuitable for direct surgical applications. Recent studies demonstrated the feasibility of isolating adipose stromal cells without the need for enzymatic digestion. These studies reported the processing of the fluid portion of liposuctioned adipose tissue (lipoaspirate fluid), which contains a significant amount of progenitor cells endowed with plastic and trophic features. In this article, the authors introduce a brand new closed device--the MyStem EVO kit--which allows nonenzymatic tissue separation and rapid isolation of lipoaspirate fluid from human liposuctioned adipose tissue. METHODS: Adipose tissue was liposuctioned from 14 donors, split into aliquots, and alternatively processed using either centrifugation or the MyStem EVO kit, to separate fatty and lipoaspirate fluid portions. The samples were analyzed comparatively by flow cytometry, histology, and differentiation assays. Osteoinductive and angioinductive features were analyzed through in vitro co-culture assays. RESULTS: The alternative procedures enabled comparable yields; the kit rapidly isolated lipoaspirate fluid comprising a homogenous cell population with adipose stem cell immunophenotype, bilineage potential, and efficient osteoinductive and angioinductive features. CONCLUSION: MyStem EVO allows the rapid isolation of lipoaspirate fluid with trophic properties within a closed system, and is potentially useful for regenerative medicine applications.


Subject(s)
Cell Separation/instrumentation , Lipectomy , Stem Cells , Subcutaneous Fat/cytology , Adult , Cell Separation/methods , Centrifugation , Female , Humans , In Vitro Techniques , Male
15.
Cytotherapy ; 17(8): 1076-89, 2015 Aug.
Article in English | MEDLINE | ID: mdl-26002819

ABSTRACT

BACKGROUND AIMS: Subcutaneous fat represents a valuable reservoir of adipose-derived stem cells (ASCs) in the stromal vascular fraction (SVF), widely exploited in regenerative medicine applications, being easily harvested through lipoaspiration. The lack of standardized procedures for autologous fat grafting guided research efforts aimed at identifying possible differences related to the harvesting site, which may affect cell isolation yield, cell growth properties and clinical outcomes. Subcutaneous fat features a complex architecture: the superficial fascia separates superficial adipose tissue (SAT) from deep layer tissue (DAT). We aimed to unravel the differences between SAT and DAT, considering morphological structure, SVF composition, and ASC properties. METHODS: SAT and DAT were collected from female donors and comparatively analyzed to evaluate cellular yield and viability, morphology, immunophenotype and molecular profile. ASCs were isolated in primary culture and used for in vitro differentiation assays. SAT and DAT from cadaver donors were also analyzed through histology and immunohistochemistry to assess morphology and cell localization within the hypoderm. RESULTS: Liposuctioned SAT contained a higher stromal tissue compound, along with a higher proportion of CD105-positive cells, compared with DAT from the same harvesting site. Also, cells isolated from SAT displayed increased multipotency and stemness features. All differences were mainly evidenced in specimens harvested from the abdominal region. According to our results, SAT features overall increased stem properties. CONCLUSIONS: Given that subcutaneous adipose tissue is currently exploited as the gold standard source for high-yield isolation of adult stem cells, these results may provide precious hints toward the definition of standardized protocols for microharvesting.


Subject(s)
Adipocytes/cytology , Adult Stem Cells/cytology , Cell Separation/methods , Regenerative Medicine/methods , Subcutaneous Fat/cytology , Adult , Cell Count , Cell Differentiation/physiology , Cell Proliferation , Cells, Cultured , Female , Humans , Lipectomy , Middle Aged , Primary Cell Culture , Stromal Cells/cytology
16.
Cell Tissue Bank ; 16(2): 195-207, 2015 Jun.
Article in English | MEDLINE | ID: mdl-25204398

ABSTRACT

Mesenchymal stem cells (MSCs) are an accepted candidate for cell-based therapy of multiple diseases. The interest in MSCs and their possible application in cell therapy have resulted in a better understanding of the basic biology of these cells. Recently, like aggregation and transforming growth factor beta (TGFß) delivery, hypoxia has been indicated as crucial for complete chondrogenesis. The aim of this study was to test different culture conditions for directing stem cell differentiation into the chondrogenic lineage in vitro by testing different TGFß superfamily members into the culture media under normoxic conditions. All chondrogenic culture conditions used allowed the differentiation of bone marrow-MSCs (BM-MSCs) into chondrogenic lineage. Chondrogenic induction capacity depended on the growth factor added to the culture media. In particular, the chondrogenic culture condition that better induced chondrogenesis was the medium that included the combination of three growth factors: bone morphogenetic protein-2 (BMP-2), BMP-7 and TGFß-3. In this culture media, differentiated cells showed the highest levels expression of two markers of chondrogenesis, SOX9 and COL2A1, compared to the control points (p < 0.05, two-tailed t test). In our experimental conditions, the combination of BMP-2, BMP-7 and TGFß-3 was the most effective in promoting chondrogenesis of BM-MSCs. These results underline the importance of determining in each experimental design the best protocol for in vitro directing stem cell differentiation into the chondrogenic lineage.


Subject(s)
Bone Morphogenetic Protein 2/metabolism , Bone Morphogenetic Protein 7/metabolism , Cell Differentiation/physiology , Chondrogenesis/physiology , Mesenchymal Stem Cells/cytology , Transforming Growth Factor beta3/metabolism , Aged , Aged, 80 and over , Bone Marrow Cells/cytology , Cell Culture Techniques , Cells, Cultured , Chondrocytes/cytology , Humans , Middle Aged
17.
ScientificWorldJournal ; 2014: 406159, 2014.
Article in English | MEDLINE | ID: mdl-24672316

ABSTRACT

Bone fusion represents a challenge in the orthopedics practice, being especially indicated for spine disorders. Spinal fusion can be defined as the bony union between two vertebral bodies obtained through the surgical introduction of an osteoconductive, osteoinductive, and osteogenic compound. Autogenous bone graft provides all these three qualities and is considered the gold standard. However, a high morbidity is associated with the harvest procedure. Intensive research efforts have been spent during the last decades to develop new approaches and technologies for successful spine fusion. In recent years, cell and gene therapies have attracted great interest from the scientific community. The improved knowledge of both mesenchymal stem cell biology and osteogenic molecules allowed their use in regenerative medicine, representing attractive approaches to achieve bone regeneration also in spinal surgery applications. In this review we aim to describe the developing gene- and cell-based bone regenerative approaches as promising future trends in spine fusion.


Subject(s)
Cell- and Tissue-Based Therapy , Genetic Therapy , Spinal Fusion , Humans
18.
Biomed Res Int ; 2013: 416391, 2013.
Article in English | MEDLINE | ID: mdl-24307997

ABSTRACT

Adipose tissue represents a hot topic in regenerative medicine because of the tissue source abundance, the relatively easy retrieval, and the inherent biological properties of mesenchymal stem cells residing in its stroma. Adipose-derived mesenchymal stem cells (ASCs) are indeed multipotent somatic stem cells exhibiting growth kinetics and plasticity, proved to induce efficient tissue regeneration in several biomedical applications. A defined consensus for their isolation, classification, and characterization has been very recently achieved. In particular, bone tissue reconstruction and regeneration based on ASCs has emerged as a promising approach to restore structure and function of bone compromised by injury or disease. ASCs have been used in combination with osteoinductive biomaterial and/or osteogenic molecules, in either static or dynamic culture systems, to improve bone regeneration in several animal models. To date, few clinical trials on ASC-based bone reconstruction have been concluded and proved effective. The aim of this review is to dissect the state of the art on ASC use in bone regenerative applications in the attempt to provide a comprehensive coverage of the topics, from the basic laboratory to recent clinical applications.


Subject(s)
Bone Regeneration , Mesenchymal Stem Cell Transplantation/methods , Mesenchymal Stem Cells/cytology , Regenerative Medicine , Adipocytes/cytology , Adipose Tissue/cytology , Cell Differentiation/genetics , Humans , Osteogenesis , Tissue Engineering
19.
Stem Cells Int ; 2013: 232896, 2013.
Article in English | MEDLINE | ID: mdl-24082888

ABSTRACT

Background. The interests in mesenchymal stem cells (MSCs) and their application in cell therapy have resulted in a better understanding of the basic biology of these cells. Recently hypoxia has been indicated as crucial for complete chondrogenesis. We aimed at analyzing bone marrow MSCs (BM-MSCs) differentiation capacity under normoxic and severe hypoxic culture conditions. Methods. MSCs were characterized by flow cytometry and differentiated towards adipocytes, osteoblasts, and chondrocytes under normoxic or severe hypoxic conditions. The differentiations were confirmed comparing each treated point with a control point made of cells grown in DMEM and fetal bovine serum (FBS). Results. BM-MSCs from the donors displayed only few phenotypical differences in surface antigens expressions. Analyzing marker genes expression levels of the treated cells compared to their control point for each lineage showed a good differentiation in normoxic conditions and the absence of this differentiation capacity in severe hypoxic cultures. Conclusions. In our experimental conditions, severe hypoxia affects the in vitro differentiation potential of BM-MSCs. Adipogenic, osteogenic, and chondrogenic differentiations are absent in severe hypoxic conditions. Our work underlines that severe hypoxia slows cell differentiation by means of molecular mechanisms since a decrease in the expression of adipocyte-, osteoblast-, and chondrocyte-specific genes was observed.

20.
BMC Musculoskelet Disord ; 13: 144, 2012 Aug 12.
Article in English | MEDLINE | ID: mdl-22883423

ABSTRACT

BACKGROUND: Osteoarthritis (OA) is a multifactorial disease characterized by destruction of the articular cartilage due to environmental, mechanical and genetic components. The genetics of OA is complex and is not completely understood. Recent works have demonstrated the importance of microRNAs (miRNAs) in cartilage function. MiRNAs are a class of small noncoding RNAs that regulate gene expression and are involved in different cellular process: apoptosis, proliferation, development, glucose and lipid metabolism. The aim of this study was to identify and characterize the expression profile of miRNAs in normal and OA chondrocytes and to determine their role in the OA. METHODS: Chondrocytes were moved to aggregate culture and evaluated using histological and qPCR techniques. miRNAs were isolated and analyzed using the Agilent Human miRNA Microarray. RESULTS: Of the 723 miRNAs analyzed, 7 miRNAs showed a statistically significant differential expression. Amongst these 7 human miRNAs, 1 was up-regulated in OA chondrocytes (hsa-miR-483-5p) and 6 were up-regulated in normal chondrocytes (hsa-miR-149*, hsa-miR-582-3p, hsa-miR-1227, hsa-miR-634, hsa-miR-576-5p and hsa-miR-641). These profiling results were validated by the detection of some selected miRNAs by qPCR. In silico analyses predicted that key molecular pathways potentially altered by the miRNAs differentially expressed in normal and OA chondrocytes include TGF-beta, Wnt, Erb and mTOR signalling; all of them implicated in the development, maintenance and destruction of articular cartilage. CONCLUSIONS: We have identified 7 miRNAs differentially expressed in OA and normal chondrocytes. Our potential miRNA target predictions and the signalling cascades altered by the differentially expressed miRNAs supports the potential involvement of the detected miRNAs in OA pathology. Due to the importance of miRNA in mediating the translation of target mRNA into protein, the identification of these miRNAs differentially expressed in normal and OA chondrocyte micropellets could have important diagnostic and therapeutic potential. Further studies are needed to know the function of these miRNAs, including the search of their target mRNA genes, which could lead to the development of novel therapeutic strategies for the OA treatment.


Subject(s)
Chondrocytes/metabolism , Gene Expression Profiling , MicroRNAs/metabolism , Osteoarthritis/genetics , Aged , Case-Control Studies , Cells, Cultured , Chondrocytes/pathology , Computational Biology , Female , Gene Expression Profiling/methods , Gene Expression Regulation , Humans , Immunohistochemistry , Male , Middle Aged , Oligonucleotide Array Sequence Analysis , Osteoarthritis/pathology , Real-Time Polymerase Chain Reaction , Reproducibility of Results
SELECTION OF CITATIONS
SEARCH DETAIL
...