Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Acta Biomater ; 152: 532-545, 2022 10 15.
Article in English | MEDLINE | ID: mdl-36087868

ABSTRACT

Drug delivery requires precision in timing, location, and dosage to achieve therapeutic benefits. Challenges in addressing all three of these critical criteria result in poor temporal dexterity, widespread accumulation and off-target effects, and high doses with the potential for toxicity. To address these challenges, we have developed the BiomatErial Accumulating Carriers for On-demand Nanotherapy (BEACON) platform that utilizes an implantable biomaterial to serve as a target for systemically delivered nanoparticles (NPs). With the BEACON system, administered NPs are conjugated with a ligand that has high affinity for a receptor in the implanted biomaterial. To test BEACON, an in vivo spinal cord injury (SCI) model was used as it provides an injury model where the three identified criteria can be tested as it is a dynamic and complicated injury model with no currently approved therapies. Through our work, we have demonstrated temporal dexterity in NP administration by injecting 6 days post-SCI, decreased off-target accumulation with a significant drop in liver accumulation, and retention of our NPs in the target biomaterial. The BEACON system can be applied broadly, beyond the nervous system, to improve systemically delivered NP accumulation at an implanted biomaterial target. STATEMENT OF SIGNIFICANCE: Targeted drug delivery approaches have the potential to improve therapeutic regimens for patients on a case-by-case basis. Improved localization of a therapeutic to site of interest can result in increased efficacy and limit the need for repeat dosing. Unfortunately, targeted strategies can fall short when receptors on cells or tissues are too widespread or change over the course of disease or injury progression. The BEACON system developed herein eliminates the need to target a cell or tissue receptor by targeting an implantable biomaterial with location-controllable accumulation and sustained presentation over time. The targeting paradigm presented by BEACON is widely applicable throughout tissue engineering and regenerative medicine without the need to retool for each new application.


Subject(s)
Nanoparticles , Spinal Cord Injuries , Biocompatible Materials/pharmacology , Biocompatible Materials/therapeutic use , Drug Delivery Systems , Humans , Ligands , Nanoparticles/therapeutic use , Spinal Cord , Spinal Cord Injuries/drug therapy
2.
Cells Tissues Organs ; 211(6): 655-669, 2022.
Article in English | MEDLINE | ID: mdl-34120118

ABSTRACT

Stem cell therapies have the potential to not only repair, but to regenerate tissue of the central nervous system (CNS). Recent studies demonstrate that transplanted stem cells can differentiate into neurons and integrate with the intact circuitry after traumatic injury. Unfortunately, the positive findings described in rodent models have not been replicated in clinical trials, where the burden to maintain the cell viability necessary for tissue repair becomes more challenging. Low transplant survival remains the greatest barrier to stem cell-mediated repair of the CNS, often with fewer than 1-2% of the transplanted cells remaining after 1 week. Strategic transplantation parameters, such as injection location, cell concentration, and transplant timing achieve only modest improvements in stem cell transplant survival and appear inconsistent across studies. Biomaterials provide researchers with a means to significantly improve stem cell transplant survival through two mechanisms: (1) a vehicle to deliver and protect the stem cells and (2) a substrate to control the cytotoxic injury environment. These biomaterial strategies can alleviate cell death associated with delivery to the injury and can be used to limit cell death after transplantation by limiting cell exposure to cytotoxic signals. Moreover, it is likely that control of the injury environment with biomaterials will lead to a more reliable support for transplanted cell populations. This review will highlight the challenges associated with cell delivery in the CNS and the advances in biomaterial development and deployment for stem cell therapies necessary to bolster stem cell-mediated repair.


Subject(s)
Biocompatible Materials , Neural Stem Cells , Biocompatible Materials/therapeutic use , Cell Differentiation , Central Nervous System , Neurons , Stem Cell Transplantation
3.
Biotechnol Bioeng ; 118(7): 2609-2625, 2021 07.
Article in English | MEDLINE | ID: mdl-33835500

ABSTRACT

A complex cellular cascade characterizes the pathophysiological response following spinal cord injury (SCI) limiting regeneration. Biomaterial and stem cell combination therapies together have shown synergistic effects, compared to the independent benefits of each intervention, and represent a promising approach towards regaining function after injury. In this study, we combine our polyethylene glycol (PEG) cell delivery platform with lentiviral-mediated overexpression of the anti-inflammatory cytokine interleukin (IL)-10 to improve mouse embryonic Day 14 (E14) spinal progenitor transplant survival. Immediately following injury in a mouse SCI hemisection model, five PEG tubes were implanted followed by direct injection into the tubes of lentivirus encoding for IL-10. Two weeks after tube implantation, mouse E14 spinal progenitors were injected directly into the integrated tubes, which served as a soft substrate for cell transplantation. Together, the tubes with the IL-10 encoding lentivirus improved E14 spinal progenitor survival, assessed at 2 weeks posttransplantation (4 weeks postinjury). On average, 8.1% of E14 spinal progenitors survived in mice receiving IL-10 lentivirus-laden tubes compared with 0.7% in mice receiving transplants without tubes, an 11.5-fold difference. Surviving E14 spinal progenitors gave rise to neurons when injected into tubes. Axon elongation and remyelination were observed, in addition to a significant increase in functional recovery in mice receiving IL-10 lentivirus-laden tubes with E14 spinal progenitor delivery compared to the injury only control by 4 weeks postinjury. All other conditions did not exhibit increased stepping until 8 or 12 weeks postinjury. This system affords increased control over the transplantation microenvironment, offering the potential to improve stem cell-mediated tissue regeneration.


Subject(s)
Cell Differentiation , Hydrogels/chemistry , Interleukin-10 , Lentivirus , Neural Stem Cells/metabolism , Neurons/metabolism , Spinal Cord Injuries/metabolism , Spinal Cord/metabolism , Animals , Cell Survival , Interleukin-10/biosynthesis , Interleukin-10/genetics , Mice , Mice, Transgenic , Neural Stem Cells/pathology , Neurons/pathology , Spinal Cord/pathology , Spinal Cord Injuries/genetics , Spinal Cord Injuries/pathology , Spinal Cord Injuries/therapy
4.
AAPS PharmSciTech ; 22(3): 101, 2021 Mar 12.
Article in English | MEDLINE | ID: mdl-33712968

ABSTRACT

There is an increasing need to develop improved and non-invasive strategies to treat spinal cord injury (SCI). Nanoparticles (NPs) are an enabling technology to improve drug delivery, modulate inflammatory responses, and restore functional responses following SCI. However, the complex pathophysiology associated with SCI presents several distinct challenges that must be overcome for sufficient NP drug delivery to the spinal cord. The objective of this mini-review is to highlight the physiological challenges and cell types available for modulation and discuss several promising advancements using NPs to improve SCI treatment. We will focus our discussion on recent innovative approaches in NP drug delivery and how the implementation of multifactorial approaches to address the proinflammatory and complex immune dysfunction in SCI offers significant potential to improve outcomes in SCI.


Subject(s)
Drug Delivery Systems , Nanoparticles , Spinal Cord Injuries/drug therapy , Animals , Anti-Inflammatory Agents/administration & dosage , Anti-Inflammatory Agents/therapeutic use , Humans
5.
ACS Biomater Sci Eng ; 6(10): 5771-5784, 2020 10 12.
Article in English | MEDLINE | ID: mdl-33320551

ABSTRACT

An important role of neural stem cell transplantation is repopulating neural and glial cells that actively promote repair following spinal cord injury (SCI). However, stem cell survival after transplantation is severely hampered by the inflammatory environment that arises after SCI. Biomaterials have a demonstrated history of managing post-SCI inflammation and can serve as a vehicle for stem cell delivery. In this study, we utilize macroporous polyethylene glycol (PEG) tubes, which were previously found to modulate the post-SCI microenvironment, to serve as a viable, soft substrate for injecting mouse embryonic day 14 (E14) spinal progenitors 2 weeks after tube implantation into a mouse SCI model. At 2 weeks after transplantation (4 weeks after injury), 4.3% of transplanted E14 spinal progenitors survived when transplanted directly into tubes compared to 0.7% when transplanted into the injury alone. Surviving E14 spinal progenitors exhibited a commitment to the neuronal lineage at 4 weeks post-injury, as assessed by both early and late phenotypic markers. Mice receiving tubes with E14 spinal progenitor transplantations had on average 21 ± 4 axons/mm2 regenerated compared to 8 ± 1 axons/mm2 for the injury only control, which corresponded with a significant increase in remyelination compared to the injury only control, while all conditions exhibited improved forelimb control 4 weeks after injury compared to the injury only. Collectively, we have demonstrated the feasibility of using PEG tubes to modify the implantation site and improve survival of transplanted E14 spinal progenitors.


Subject(s)
Neural Stem Cells , Spinal Cord Injuries , Animals , Axons , Hydrogels , Mice , Neural Stem Cells/transplantation , Spinal Cord Injuries/therapy , Stem Cell Transplantation
6.
Tissue Eng Part A ; 26(11-12): 672-682, 2020 06.
Article in English | MEDLINE | ID: mdl-32000627

ABSTRACT

One million estimated cases of spinal cord injury (SCI) have been reported in the United States and repairing an injury has constituted a difficult clinical challenge. The complex, dynamic, inhibitory microenvironment postinjury, which is characterized by proinflammatory signaling from invading leukocytes and lack of sufficient factors that promote axonal survival and elongation, limits regeneration. Herein, we investigated the delivery of polycistronic vectors, which have the potential to coexpress factors that target distinct barriers to regeneration, from a multiple channel poly(lactide-co-glycolide) (PLG) bridge to enhance spinal cord regeneration. In this study, we investigated polycistronic delivery of IL-10 that targets proinflammatory signaling, and NT-3 that targets axonal survival and elongation. A significant increase was observed in the density of regenerative macrophages for IL-10+NT-3 condition relative to conditions without IL-10. Furthermore, combined delivery of IL-10+NT-3 produced a significant increase of axonal density and notably myelinated axons compared with all other conditions. A significant increase in functional recovery was observed for IL-10+NT-3 delivery at 12 weeks postinjury that was positively correlated to oligodendrocyte myelinated axon density, suggesting oligodendrocyte-mediated myelination as an important target to improve functional recovery. These results further support the use of multiple channel PLG bridges as a growth supportive substrate and platform to deliver bioactive agents to modulate the SCI microenvironment and promote regeneration and functional recovery. Impact statement Spinal cord injury (SCI) results in a complex microenvironment that contains multiple barriers to regeneration and functional recovery. Multiple factors are necessary to address these barriers to regeneration, and polycistronic lentiviral gene therapy represents a strategy to locally express multiple factors simultaneously. A bicistronic vector encoding IL-10 and NT-3 was delivered from a poly(lactide-co-glycolide) bridge, which provides structural support that guides regeneration, resulting in increased axonal growth, myelination, and subsequent functional recovery. These results demonstrate the opportunity of targeting multiple barriers to SCI regeneration for additive effects.


Subject(s)
Interleukin-10/physiology , Nerve Growth Factors/physiology , Nerve Regeneration/physiology , Animals , Blotting, Western , Female , Immunohistochemistry , Interleukin-10/genetics , Locomotion , Mice , Mice, Inbred C57BL , Myelin Sheath/metabolism , Nerve Growth Factors/genetics , Nerve Regeneration/genetics , Oligodendroglia/metabolism , Receptor, EphB3/metabolism , Spinal Cord Injuries
7.
Acta Biomater ; 86: 312-322, 2019 03 01.
Article in English | MEDLINE | ID: mdl-30610918

ABSTRACT

Directing the organization of cells into a tissue with defined architectures is one use of biomaterials for regenerative medicine. To this end, hydrogels are widely investigated as they have mechanical properties similar to native soft tissues and can be formed in situ to conform to a defect. Herein, we describe the development of porous hydrogel tubes fabricated through a two-step polymerization process with an intermediate microsphere phase that provides macroscale porosity (66.5%) for cell infiltration. These tubes were investigated in a spinal cord injury model, with the tubes assembled to conform to the injury and to provide an orientation that guides axons through the injury. Implanted tubes had good apposition and were integrated with the host tissue due to cell infiltration, with a transient increase in immune cell infiltration at 1 week that resolved by 2 weeks post injury compared to a gelfoam control. The glial scar was significantly reduced relative to control, which enabled robust axon growth along the inner and outer surface of the tubes. Axon density within the hydrogel tubes (1744 axons/mm2) was significantly increased more than 3-fold compared to the control (456 axons/mm2), with approximately 30% of axons within the tube myelinated. Furthermore, implantation of hydrogel tubes enhanced functional recovery relative to control. This modular assembly of porous tubes to fill a defect and directionally orient tissue growth could be extended beyond spinal cord injury to other tissues, such as vascular or musculoskeletal tissue. STATEMENT OF SIGNIFICANCE: Tissue engineering approaches that mimic the native architecture of healthy tissue are needed following injury. Traditionally, pre-molded scaffolds have been implemented but require a priori knowledge of wound geometries. Conversely, hydrogels can conform to any injury, but do not guide bi-directional regeneration. In this work, we investigate the feasibility of a system of modular hydrogel tubes to promote bi-directional regeneration after spinal cord injury. This system allows for tubes to be cut to size during surgery and implanted one-by-one to fill any injury, while providing bi-directional guidance. Moreover, this system of tubes can be broadly applied to tissue engineering approaches that require a modular guidance system, such as repair to vascular or musculoskeletal tissues.


Subject(s)
Hydrogels/pharmacology , Nerve Regeneration/drug effects , Spinal Cord Injuries/physiopathology , Animals , Axons/drug effects , Axons/pathology , Cicatrix/pathology , Cross-Linking Reagents/chemistry , Female , Hindlimb/drug effects , Hindlimb/physiology , Locomotion/drug effects , Maleimides/chemistry , Mice, Inbred C57BL , Microspheres , Myelin Sheath/drug effects , Myelin Sheath/metabolism , Neuroglia/pathology , Polyethylene Glycols/chemistry , Polymerization , Porosity , Spinal Cord Injuries/pathology , Tissue Scaffolds/chemistry
8.
ACS Biomater Sci Eng ; 5(12): 6679-6690, 2019 Dec 09.
Article in English | MEDLINE | ID: mdl-33423486

ABSTRACT

Spinal cord injury (SCI) is a devastating condition that may cause permanent functional loss below the level of injury, including paralysis and loss of bladder, bowel, and sexual function. Patients are rarely treated immediately, and this delay is associated with tissue loss and scar formation that can make regeneration at chronic time points more challenging. Herein, we investigated regeneration using a poly(lactide-co-glycolide) multichannel bridge implanted into a chronic SCI following surgical resection of necrotic tissue. We characterized the dynamic injury response and noted that scar formation decreased at 4 and 8 weeks postinjury (wpi), yet macrophage infiltration increased between 4 and 8 wpi. Subsequently, the scar tissue was resected and bridges were implanted at 4 and 8 wpi. We observed robust axon growth into the bridge and remyelination at 6 months after initial injury. Axon densities were increased for 8 week bridge implantation relative to 4 week bridge implantation, whereas greater myelination, particularly by Schwann cells, was observed with 4 week bridge implantation. The process of bridge implantation did not significantly decrease the postinjury function. Collectively, this chronic model follows the pathophysiology of human SCI, and bridge implantation allows for clear demarcation of the regenerated tissue. These data demonstrate that bridge implantation into chronic SCI supports regeneration and provides a platform to investigate strategies to buttress and expand regeneration of neural tissue at chronic time points.

SELECTION OF CITATIONS
SEARCH DETAIL
...