Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Biodivers Data J ; 12: e119481, 2024.
Article in English | MEDLINE | ID: mdl-38524899

ABSTRACT

Background: The genus Clavicornaltica Scherer 1974 consists of very small, soil-dwelling flea beetles in South, Southeast and East Asia. Due to their diminutive size and morphological similarities, very little is known about their ecology and taxonomical diversity. It is likely that further studies will reveal this genus to be much more speciose than the 30 species currently recognised. New information: A new species of Clavicornaltica from Brunei Darussalam is described, C.mataikanensis Otani et al., sp. nov. This is the second species of this genus recorded from Ulu Temburong National Park.

2.
Mol Phylogenet Evol ; 178: 107633, 2023 01.
Article in English | MEDLINE | ID: mdl-36182051

ABSTRACT

Bolbitis is a pantropical fern genus of Dryopteridaceae with ca. 80 species mainly in tropical Asia. Earlier studies confirmed the monophyly of Bolbitis when Mickelia is excluded and identified three major clades in Bolbitis. However, earlier studies are based on relatively small sampling and the majority of Asian species are not sampled. In this study, DNA sequences of three plastid markers of 169 accessions representing ca. 68 (85 % of total) species of Bolbitis in nine out of the 10 series recognized by Hennipman (1977), and 54 accessions representing the five remaining bolbitidoid genera are used to infer a global phylogeny with a focus on Asian species. The major results include: (1) Bolbitis is strongly supported as monophyletic; (2) species of Bolbitis are resolved into four major clades and their relationships are: the Malagasy/Mascarene clade is sister to the rest, followed by the African clade which is sister to the American clade + the Asian clade; (3) six well-supported subclades are identified in the most speciose Asian clade; (4) the free-veined Egenolfia is embedded in Bolbitis and is paraphyletic in relation to species with anastomosing venation; (5) three series sensu Hennipman (1977), B. ser. Alienae, B. ser. Egenolfianae, and B. ser. Heteroclitae, are paraphyletic or polyphyletic; (6) evolution of six morphological characters is analyzed and free venation is found to have evolved from anastomosing venation and reversed to free venation in Bolbitis; and (7) biogeographical implications are drawn and it is shown that a single recent dispersal from Asia resulted in continental disjunction of closely related ferns of Bolbitis between Africa and America.


Subject(s)
Dryopteridaceae , Ferns , Phylogeny , Plastids/genetics , Base Sequence
3.
Biodivers Data J ; 11: e101579, 2023.
Article in English | MEDLINE | ID: mdl-38327313

ABSTRACT

Background: During citizen-science expeditions to the Ulu Temburong National Park, Brunei, several individuals were collected of a semi-slug species of the genus Microparmarion that, based on morphology and in-the-field DNA-barcoding, was found to be an undescribed species. New information: In this paper, we describe Microparmarionsallehi Wu, Ezzwan & Hamdani, n. sp., after field centre supervisor Md Salleh Abdullah Bat. We provide details on the external and internal reproductive morphology, the shell and the ecology of the type locality, as well as a diagnosis comparing it with related species. DNA barcodes were generated for five individuals and used for a phylogenetic reconstruction. Microparmarionsallehi sp. n. and M.exquadratus Schilthuizen et al., 2019 so far are the only Bornean species of the genus that live in lowland forest; other species are found in montane forests.

4.
Biodivers Data J ; 8: e47484, 2020.
Article in English | MEDLINE | ID: mdl-32132859

ABSTRACT

BACKGROUND: Terrestrial Caenogastropoda form an important but threatened component of the Borneo tropical rainforest malacofauna, where the group is nearly as rich in species as the Stylommatophora. They are, however, more sensitive to drought, temperature extremes and forest degradation. NEW INFORMATION: On a field course at Kuala Belalong Field Studies Centre in Brunei Darussalam (Borneo), a new caenogastropod species, belonging to the genus Craspedotropis, was discovered by the course participants. The participants decided to name the species Craspedotropis gretathunbergae n. sp., in honour of the climate change activist Greta Thunberg, as caenogastropod land snails, such as this species, are likely to suffer because of climate change.

5.
Cladistics ; 36(1): 22-71, 2020 Feb.
Article in English | MEDLINE | ID: mdl-34618950

ABSTRACT

The infrageneric relationships and taxonomy of the largest fern genus, Asplenium (Aspleniaceae), have remained poorly understood. Previous studies have focused mainly on specific species complexes involving a few or dozens of species only, or have achieved a large taxon sampling but only one plastid marker was used. In the present study, DNA sequences from six plastid markers (atpB, rbcL, rps4, rps4-trnS, trnL and trnL-F) of 1030 accessions (616 of them newly sequenced here) representing c. 420 species of Asplenium (60% of estimated species diversity), 16 species of Hymenasplenium, three Diplaziopsidaceae, and four Rhachidosoraceae were used to produce the largest genus-level phylogeny yet for ferns. Our major results include: (i) Asplenium as broadly circumscribed is monophyletic based on our inclusion of representatives of 32 of 38 named segregate genera; (ii) 11 major clades in Asplenium are identified, and their relationships are mostly well-resolved and strongly supported; (iii) numerous species, unsampled in previous studies, suggest new relationships and numerous cryptic species and species complexes in Asplenium; and (iv) the accrued molecular evidence provides an essential foundation for further investigations of complex patterns of geographical diversification, speciation and reticulate evolution in this family.

6.
Biodivers Data J ; (7): e32555, 2019.
Article in English | MEDLINE | ID: mdl-30740026

ABSTRACT

BACKGROUND: Clavicornaltica is a genus of very small flea beetles living in the leaf litter layer of Asian forests, easily sampled with Winkler extraction. The genus is presumably very rich in species, but their taxonomy is hampered by their small size and morphological uniformity. NEW INFORMATION: On a 'taxon expedition'-style field course at Kuala Belalong Field Studies Centre in Brunei Darussalam (Borneo), a new species, Clavicornaltica belalongensis n. sp., was discovered and taxonomically treated by the course participants. We also present the first DNA barcodes for the genus.

7.
Mol Phylogenet Evol ; 114: 271-294, 2017 09.
Article in English | MEDLINE | ID: mdl-28676427

ABSTRACT

The Old World fern genus Pyrrosia (Polypodiaceae) offers a rare system in ferns to study morphological evolution because almost all species of this genus are well studied for their morphology, anatomy, and spore features, and various hypotheses have been proposed in terms of the phylogeny and evolution in this genus. However, the molecular phylogeny of the genus lags behind. The monophyly of the genus has been uncertain and a modern phylogenetic study of the genus based on molecular data has been lacking. In the present study, DNA sequences of five plastid markers of 220 accessions of Polypodiaceae representing two species of Drymoglossum, 14 species of Platycerium, 50 species of Pyrrosia, and the only species of Saxiglossum (subfamily Platycerioideae), and 12 species of other Polypodiaceae representing the remaining four subfamilies are used to infer a phylogeny of the genus. Major results and conclusions of this study include: (1) Pyrrosia as currently circumscribed is paraphyletic in relation to Platycerium and can be divided into two genera: Pyrrosia s.s. and Hovenkampia (gen. nov.), with Hovenkampia and Platycerium forming a strongly supported clade sister to Pyrrosia s.s.; (2) Subfamily Platycerioideae should contain three genera only, Hovenkampia, Platycerium, and Pyrrosia s.s.; (3) Based on the molecular phylogeny, macromorphology, anatomical features, and spore morphology, four major clades in the genus are identified and three of the four are further resolved into four, four, and six subclades, respectively; (4) Three species, P. angustissima, P. foveolata, and P. mannii, not assigned to any groups by Hovenkamp (1986) because of their unusual morphology, each form monospecific clades; (5) Drymoglossum is not monophyletic and those species previously assigned to this genus are resolved in two different subclades; (6) Saxiglossum is resolved as the first lineage in the Niphopsis clade; and (7) The evolution of ten major morphological characters in the subfamily is inferred based on the phylogeny and various morphological synapomorphies for various clades and subclades are identified.


Subject(s)
Evolution, Molecular , Ferns/classification , Plastids/classification , Polypodiaceae/classification , DNA, Plant/chemistry , DNA, Plant/isolation & purification , DNA, Plant/metabolism , Ferns/genetics , Phylogeny , Plant Proteins/classification , Plant Proteins/genetics , Plastids/genetics , Polypodiaceae/genetics , Ribulose-Bisphosphate Carboxylase/classification , Ribulose-Bisphosphate Carboxylase/genetics , Sequence Analysis, DNA
8.
Proc Natl Acad Sci U S A ; 108(20): 8311-6, 2011 May 17.
Article in English | MEDLINE | ID: mdl-21536873

ABSTRACT

Local and landscape-scale agricultural intensification is a major driver of global biodiversity loss. Controversially discussed solutions include wildlife-friendly farming or combining high-intensity farming with land-sparing for nature. Here, we integrate biodiversity and crop productivity data for smallholder cacao in Indonesia to exemplify for tropical agroforests that there is little relationship between yield and biodiversity under current management, opening substantial opportunities for wildlife-friendly management. Species richness of trees, fungi, invertebrates, and vertebrates did not decrease with yield. Moderate shade, adequate labor, and input level can be combined with a complex habitat structure to provide high biodiversity as well as high yields. Although livelihood impacts are held up as a major obstacle for wildlife-friendly farming in the tropics, our results suggest that in some situations, agroforests can be designed to optimize both biodiversity and crop production benefits without adding pressure to convert natural habitat to farmland.


Subject(s)
Agriculture/methods , Biodiversity , Trees/growth & development , Tropical Climate , Conservation of Natural Resources/methods , Crops, Agricultural/growth & development , Indonesia
SELECTION OF CITATIONS
SEARCH DETAIL
...