Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Main subject
Language
Publication year range
1.
Animals (Basel) ; 12(13)2022 Jul 01.
Article in English | MEDLINE | ID: mdl-35804609

ABSTRACT

Prebiotics are known to have many beneficial effects on intestinal health by modulating the gut microbiota composition, thereby affecting epithelial cell proliferation and metabolism. This study had two aims: (1) to identify the protein constituents in the cecal mucosa of 50-day-old healthy (PIC × Penarlan P76) barrows, and (2) to assess the effects of 4% inclusion of dried chicory root in a cereal-based diet on the cecal mucosa proteome changes. Pigs (eight per group) were randomly allotted to the groups and were fed a control diet from the tenth day of life (C) or a diet supplemented with 4% of died chicory root (CR), for 40 days. At the age of 50 days, animals were sacrificed and cecal tissue samples were collected. It was found that feeding a CR diet significantly decreased the expression of 16 cecal mucosa proteins. Among them, fifteen proteins were down-regulated, while only one (KRT20) was shown to be up-regulated when compared to the C group. Dietary supplementation with CR caused down-expression of metabolism-associated proteins including enzymes involved in the process of glycolysis (G6PD, TPI1, ALDH9A1, CKMT1 and AKR1A1) as well as those engaged in transcriptional and translational activity (PRPF19, EEF1G) and several structural proteins (ACTR3, KRT77, CAP1 and actin). From our findings, it is possible to conclude that dietary chicory root at 4% had beneficial effects on the gut health of pigs as indicated by a changed abundance of certain cecal proteins such as KRT20, SERPINB1, HSP27, ANAXA2 and ANAXA4.

2.
Poult Sci ; 100(11): 101449, 2021 Nov.
Article in English | MEDLINE | ID: mdl-34601437

ABSTRACT

The liver, as the main metabolic organ, plays a key role in many vital processes, including nutrient metabolism, fat digestion, blood protein synthesis, and endocrine management. As one of the immune organs, it has a remarkable ability to adequately activate the immune cells in response to metabolic signals. The anatomy of the liver ensures its close interaction with the gut so that nutrients and gut microbiota contribute to normal metabolism. In chickens, the intestinal microbiota plays an important role in supporting health and improving production parameters. The most effective method of stimulating the microbiota is to administer an appropriate bioactive compound during embryonic development. In ovo stimulation on d 12 of egg incubation involves the delivery of the substance into the air chamber. The aim of the study was to analyze the changes at the protein level after in ovo administration of the synbiotic on d 12 of egg incubation. Our study is the first to conduct a proteome analysis in liver after the administration of a Lactobacillus synbiotic in ovo. Eggs of broiler chickens were injected with a synbiotic-Lactobacillus plantarum with raffinose family oligosaccharides (RFO). On d 21 posthatching liver was collected. We performed analyses based on two-dimensional electrophoresis, matrix-assisted laser desorption/ionization (MALDI) time-of-flight, and MALDI Fourier-transform ion cyclotron resonance to obtain a global view of the hepatic proteome changes in response to in ovo injection. A representative pattern of significantly altered liver proteins was observed after stimulation with the synbiotic. A total of 16 protein spots were differentially expressed, with 5 downregulated and 11 upregulated spots. We conclude that the in ovo synbiotic treatment had the potential to accelerate the major energy-yielding metabolic pathways in the liver of adult broilers.


Subject(s)
Synbiotics , Animals , Chickens , Lactobacillus , Liver , Ovum , Prebiotics , Proteome
SELECTION OF CITATIONS
SEARCH DETAIL
...