Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Ultramicroscopy ; 248: 113713, 2023 Jun.
Article in English | MEDLINE | ID: mdl-36933435

ABSTRACT

High-resolution scanning probe microscopy (SPM) is a fundamental and efficient technology for surface characterization of modern materials at the subnanometre scale. The bottleneck of SPM is the probe and scanning tip. Materials with stable electrical, thermal, and mechanical properties for high-aspect-ratio (AR) tips are continuously being developed to improve their accuracy. Among these, GaN is emerging as a significant contender that serves as a replacement for standard Si probes. In this paper, for the first time, we present an approach that demonstrates the application of GaN microrods (MRs) as high-AR SPM probes. GaN MRs were grown using molecular beam epitaxy, transferred and mounted on a cantilever using focused electron beam-induced deposition and milled in a whisker tip using a focused ion beam in a scanning electron/ion microscope. The presence of a native oxide layer covering the GaN MR surface was confirmed by X-ray photoelectron spectroscopy. Current-voltage map measurements are also presented to indicate the elimination of the native oxide layer from the tip surface. The utility of the designed probes was tested using conductive atomic force microscopy and a 24-hour durability test in contact mode atomic force microscopy. Subsequently, the graphene stacks were imaged.

2.
ACS Omega ; 7(28): 24777-24784, 2022 Jul 19.
Article in English | MEDLINE | ID: mdl-35874245

ABSTRACT

Due to the antisurfactant properties of arsenic atoms, the self-induced dodecagonal GaN microrods can be grown by molecular beam epitaxy (MBE) in Ga-rich conditions. Since temperature is a key parameter in MBE growth, the role of temperature in the growth of GaN microrods is investigated. The optimal growth temperature window for the formation of GaN microrods is observed to be between 760 and 800 °C. Lowering the temperature to 720 °C did not change the growth mechanism, but the population of irregular and amorphous microrods increased. On the other hand, increasing the growth temperature up to 880 °C interrupts the growth of GaN microrods, due to the re-evaporation of the gallium from the surface. The incorporation of As in GaN microrods is negligible, which is confirmed by X-ray diffraction and transmission electron microscopy. Moreover, the photoluminescence and cathodoluminescence characteristics typical for GaN are observed for individual GaN microrods, which additionally confirms that arsenic is not incorporated inside microrods. When the growth temperature is increased, the emission related to the band gap decreases in favor of the defect-related emission. This is typical for bulk GaN and attributed to an increase in the point defect concentration for GaN microrods grown at lower temperatures.

SELECTION OF CITATIONS
SEARCH DETAIL
...