Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Materials (Basel) ; 16(24)2023 Dec 16.
Article in English | MEDLINE | ID: mdl-38138818

ABSTRACT

Sludge, due to its form and significant moisture and zinc content, is the most problematic metallurgical waste. Near the site of a disused steelworks plant in Krakow (Poland) there is an estimated 5 million tonnes of landfill sludge that consists of more than 90% iron and other metal oxides. There is a global tendency to switch steel production towards carbonless technologies, which is why the presented work investigates the possibility of simultaneous waste liquidation and recovery of valuable metals with the use of hydrogenous reduction. Direct reduced iron (DRI) production was selected as the targeted technology, so the sludge was lumped and bound with cement or CaO addition. The obtained lumps were reduced in a hydrogenous atmosphere with gradual heating to 950 °C, after which their phase structure was analyzed and elemental analysis was performed. It was found that zinc evaporated during the experiment, but mostly thanks to the carbon contained in the sludge. The increased addition of binder to the sludge resulted in the enhancement of the lumps, but also limited the reduction range. The products obtained were mostly wustite and less pure iron. Taking into account the degree of reduction and the lumps' compression strength, the best binding was achieved by adding cement at a quantity of 5% mass.

2.
Int J Mol Sci ; 23(6)2022 Mar 17.
Article in English | MEDLINE | ID: mdl-35328660

ABSTRACT

In this work, sulfonated polyetheretherketone (S-PEEK)-based coatings, nanocrystalline ZnS and hydroxyapatite (n-HA) particles were developed on Zr-2.5Nb zirconium alloy substrates by electrophoretic deposition (EPD) combined with subsequent heat treatment. The properties of suspensions and deposition kinetics were studied. Cationic chitosan polyelectrolyte ensured the stabilization of the suspension and allowed for the co-deposition of all coating components on the cathode. The heating of the coated samples at a temperature of 450 °C and slow cooling resulted in sulfonation of the PEEK and the formation of dense coatings. The coatings were characterized by high roughness, hardness, modulus of elasticity and adhesion strength. The coatings revealed mild hydrophilicity, improved the electrochemical corrosion resistance of the alloy and induced the formation of hydroxyapatite with a cauliflower-like morphology on its surface during the Kokubo test. This work explored the great development potential of advanced sulfonated PEEK-based coatings, incorporating antibacterial and bioactive components by EPD combined with heat treatment to stimulate the surface properties of zirconium alloy for prospective dental and orthopedic applications. The antibacterial and osteoconductive properties of the obtained coatings should be further investigated.


Subject(s)
Alloys , Durapatite , Alloys/chemistry , Anti-Bacterial Agents , Benzophenones , Coated Materials, Biocompatible/chemistry , Durapatite/chemistry , Ketones/chemistry , Materials Testing , Polyethylene Glycols/chemistry , Polymers , Prospective Studies , Sulfides , Surface Properties , Zinc Compounds , Zirconium/chemistry
3.
Materials (Basel) ; 14(16)2021 Aug 18.
Article in English | MEDLINE | ID: mdl-34443185

ABSTRACT

The aim of this work was to determine the influence of the tungsten addition to TiB2 coatings on their microstructure and brittle cracking resistance. Four coatings of different compositions (0, 7, 15, and 20 at.% of W) were deposited by magnetron sputtering from TiB2 and W targets. The coatings were investigated by the following methods: X-ray diffraction (XRD), transmission electron microscopy (TEM), atomic force microscopy (AFM) and X-ray photoelectron spectroscopy (XPS). All coatings had a homogeneous columnar structure with decreasing column width as the tungsten content increased. XRD and XPS analysis showed the presence of TiB2 and nonstoichiometric TiBx phases with an excess or deficiency of boron depending on composition. The crystalline size decreased from 27 nm to 10 nm with increasing W content. The brittle cracking resistance improved with increasing content of TiBx phase with deficiency of B and decreasing crystalline size.

4.
Mater Sci Eng C Mater Biol Appl ; 63: 52-61, 2016 Jun.
Article in English | MEDLINE | ID: mdl-27040195

ABSTRACT

Polyetheretherketone (PEEK) coatings of 70-90µm thick were electrophoretically deposited from a suspension of PEEK powder in ethanol on near-ß Ti-13Nb-13Zr titanium alloy. In order to produce good quality coatings, the composition of the suspension (pH) and optimized deposition parameters (applied voltage and time) were experimentally selected. The as-deposited coatings exhibited the uniform distribution of PEEK powders on the substrate. The subsequent annealing at a temperature above the PEEK melting point enabled homogeneous, semi-crystalline coatings with spherulitic morphology to be produced. A micro-scratch test showed that the coatings exhibited very good adhesion to the titanium alloy substrate. Coating delamination was not observed even up to a maximal load of 30N. The PEEK coatings significantly improved the tribological properties of the Ti-13Nb-13Zr alloy. The coefficient of friction was reduced from 0.55 for an uncoated alloy to 0.40 and 0.12 for a coated alloy in a dry sliding and sliding in Ringer's solution, respectively. The PEEK coatings exhibited excellent wear resistance in both contact conditions. Their wear rate was more than 200 times smaller compared with the wear rate of the uncoated Ti-13Nb-13Zr alloy. The obtained results indicate that electrophoretically deposited PEEK coatings on the near-ß titanium alloy exhibit very useful properties for their prospective tribological applications in medicine.


Subject(s)
Biocompatible Materials/chemistry , Ketones/chemistry , Polyethylene Glycols/chemistry , Titanium/chemistry , Benzophenones , Corrosion , Dielectric Spectroscopy , Microscopy, Atomic Force , Microscopy, Electron, Scanning , Polymers , Surface Properties , X-Ray Diffraction
SELECTION OF CITATIONS
SEARCH DETAIL
...