Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Type of study
Language
Publication year range
1.
iScience ; 27(2): 108925, 2024 Feb 16.
Article in English | MEDLINE | ID: mdl-38323009

ABSTRACT

We previously demonstrated that RNA helicase DDX3X (DDX3) can be a therapeutic target in Ewing sarcoma (EWS), but its role in EWS biology remains unclear. The present work demonstrates that DDX3 plays a unique role in DNA damage repair (DDR). We show that DDX3 interacts with several proteins involved in homologous recombination, including RAD51, RECQL1, RPA32, and XRCC2. In particular, DDX3 colocalizes with RAD51 and RNA:DNA hybrid structures in the cytoplasm of EWS cells. Inhibition of DDX3 RNA helicase activity increases cytoplasmic RNA:DNA hybrids, sequestering RAD51 in the cytoplasm, which impairs nuclear translocation of RAD51 to sites of double-stranded DNA breaks, thus increasing sensitivity of EWS to radiation treatment, both in vitro and in vivo. This discovery lays the foundation for exploring new therapeutic approaches directed at manipulating DDR protein localization in solid tumors.

2.
bioRxiv ; 2023 Jun 10.
Article in English | MEDLINE | ID: mdl-37333164

ABSTRACT

We previously demonstrated that RNA helicase DDX3X (DDX3) can be a therapeutic target in Ewing sarcoma (EWS), but its role in EWS biology remains unclear. The present work demonstrates that DDX3 plays a unique role in DNA damage repair (DDR). We show that DDX3 interacts with several proteins involved in homologous recombination, including RAD51, RECQL1, RPA32, and XRCC2. In particular, DDX3 colocalizes with RAD51 and RNA:DNA hybrid structures in the cytoplasm of EWS cells. Inhibition of DDX3 RNA helicase activity increases cytoplasmic RNA:DNA hybrids, sequestering RAD51 in the cytoplasm, which impairs nuclear translocation of RAD51 to sites of double-stranded DNA breaks thus increasing sensitivity of EWS to radiation treatment, both in vitro and in vivo. This discovery lays the foundation for exploring new therapeutic approaches directed at manipulating DDR protein localization in solid tumors.

3.
Nat Med ; 25(4): 701, 2019 Apr.
Article in English | MEDLINE | ID: mdl-30903101

ABSTRACT

In the version of this article originally published, the key for Fig. 4c was incorrect. The symbols for 'Sham' and 'Den' were reversed. The error has been corrected in the PDF and HTML versions of the manuscript.

4.
Nat Med ; 24(6): 782-791, 2018 06.
Article in English | MEDLINE | ID: mdl-29736022

ABSTRACT

Aging of hematopoietic stem cells (HSCs) is associated with a decline in their regenerative capacity and multilineage differentiation potential, contributing to the development of blood disorders. The bone marrow microenvironment has recently been suggested to influence HSC aging, but the underlying mechanisms remain largely unknown. Here we show that HSC aging critically depends on bone marrow innervation by the sympathetic nervous system (SNS), as loss of SNS nerves or adrenoreceptor ß3 signaling in the bone marrow microenvironment of young mice led to premature HSC aging, as evidenced by appearance of HSC phenotypes reminiscent of physiological aging. Strikingly, supplementation of a sympathomimetic acting selectively on adrenoreceptor ß3 to old mice significantly rejuvenated the in vivo function of aged HSCs, suggesting that the preservation or restitution of bone marrow SNS innervation during aging may hold the potential for new HSC rejuvenation strategies.


Subject(s)
Bone Marrow/innervation , Cellular Senescence , Hematopoietic Stem Cells/pathology , Nerve Degeneration/pathology , Receptors, Adrenergic, beta-3/metabolism , Stem Cell Niche , Animals , Gene Deletion , Hematopoietic Stem Cells/metabolism , Mesenchymal Stem Cells/metabolism , Mesenchymal Stem Cells/pathology , Mice, Inbred C57BL , Signal Transduction
5.
Science ; 351(6269): 176-80, 2016 Jan 08.
Article in English | MEDLINE | ID: mdl-26634440

ABSTRACT

Whereas the cellular basis of the hematopoietic stem cell (HSC) niche in the bone marrow has been characterized, the nature of the fetal liver niche is not yet elucidated. We show that Nestin(+)NG2(+) pericytes associate with portal vessels, forming a niche promoting HSC expansion. Nestin(+)NG2(+) cells and HSCs scale during development with the fractal branching patterns of portal vessels, tributaries of the umbilical vein. After closure of the umbilical inlet at birth, portal vessels undergo a transition from Neuropilin-1(+)Ephrin-B2(+) artery to EphB4(+) vein phenotype, associated with a loss of periportal Nestin(+)NG2(+) cells and emigration of HSCs away from portal vessels. These data support a model in which HSCs are titrated against a periportal vascular niche with a fractal-like organization enabled by placental circulation.


Subject(s)
Hematopoietic Stem Cells/physiology , Liver/embryology , Portal System/embryology , Stem Cell Niche/physiology , Animals , Antigens/analysis , Ephrin-B2/analysis , Female , Liver/blood supply , Male , Mice , Mice, Inbred C57BL , Mice, Mutant Strains , Nestin/analysis , Neuropilin-1/analysis , Placental Circulation , Portal System/chemistry , Pregnancy , Proteoglycans/analysis , Receptor, EphB4/analysis
6.
Nat Immunol ; 13(5): 465-73, 2012 Mar 25.
Article in English | MEDLINE | ID: mdl-22447028

ABSTRACT

Aging is linked to greater susceptibility to chronic inflammatory diseases, several of which, including periodontitis, involve neutrophil-mediated tissue injury. Here we found that aging-associated periodontitis was accompanied by lower expression of Del-1, an endogenous inhibitor of neutrophil adhesion dependent on the integrin LFA-1, and by reciprocal higher expression of interleukin 17 (IL-17). Consistent with that, IL-17 inhibited gingival endothelial cell expression of Del-1, thereby promoting LFA-1-dependent recruitment of neutrophils. Young Del-1-deficient mice developed spontaneous periodontitis that featured excessive neutrophil infiltration and IL-17 expression; disease was prevented in mice doubly deficient in Del-1 and LFA-1 or in Del-1 and the IL-17 receptor. Locally administered Del-1 inhibited IL-17 production, neutrophil accumulation and bone loss. Therefore, Del-1 suppressed LFA-1-dependent recruitment of neutrophils and IL-17-triggered inflammatory pathology and may thus be a promising therapeutic agent for inflammatory diseases.


Subject(s)
Alveolar Bone Loss/immunology , Carrier Proteins/metabolism , Interleukin-17/antagonists & inhibitors , Interleukin-17/metabolism , Neutrophil Infiltration/drug effects , Periodontitis/metabolism , Aging/immunology , Animals , Calcium-Binding Proteins , Carrier Proteins/immunology , Carrier Proteins/pharmacology , Cell Adhesion/drug effects , Cell Adhesion Molecules , Endothelial Cells/drug effects , Endothelial Cells/immunology , Female , Integrins/antagonists & inhibitors , Integrins/immunology , Integrins/metabolism , Intercellular Signaling Peptides and Proteins , Interleukin-17/immunology , Lymphocyte Function-Associated Antigen-1/immunology , Lymphocyte Function-Associated Antigen-1/metabolism , Male , Mice , Mice, Inbred BALB C , Mice, Inbred C57BL , Mice, Knockout , Neutrophil Infiltration/immunology , Neutrophils/immunology , Neutrophils/metabolism , Periodontal Atrophy/immunology , Periodontal Atrophy/metabolism , Periodontitis/immunology , Periodontitis/therapy , Receptors, Interleukin-17/deficiency , Receptors, Interleukin-17/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...