Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
Add more filters











Publication year range
1.
Sci Rep ; 14(1): 18875, 2024 08 14.
Article in English | MEDLINE | ID: mdl-39143185

ABSTRACT

Chagas disease, caused by Trypanosoma cruzi (T. cruzi), is one of the most important neglected diseases in Latin America. The limited use of the current nitro-derivative-based chemotherapy highlights the need for alternative drugs and the identification of their molecular targets. In this study, we investigated the trypanocidal effect of the sesquiterpene lactone dehydroleucodine (DhL) and its derivatives, focusing on the antioxidative defense of the parasites. DhL and two derivatives, at lesser extent, displayed antiproliferative effect on the parasites. This effect was blocked by the reducing agent glutathione (GSH). Treated parasites exhibited increased intracellular ROS concentration and trypanothione synthetase activity, accompanied by mitochondrial swelling. Although molecular dynamics studies predicted that GSH would not interact with DhL, 1H-NMR analysis confirmed that GSH could protect parasites by interacting with the lactone. When parasites overexpressing mitochondrial tryparedoxin peroxidase were incubated with DhL, its effect was attenuated. Overexpression of cytosolic tryparedoxin peroxidase also provided some protection against DhL. These findings suggest that DhL induces oxidative imbalance in T. cruzi, offering new insights into potential drug targets against this parasite.


Subject(s)
Lactones , Reactive Oxygen Species , Sesquiterpenes , Trypanosoma cruzi , Trypanosoma cruzi/drug effects , Trypanosoma cruzi/metabolism , Sesquiterpenes/pharmacology , Lactones/pharmacology , Reactive Oxygen Species/metabolism , Trypanocidal Agents/pharmacology , Glutathione/metabolism , Chagas Disease/drug therapy , Chagas Disease/parasitology , Protozoan Proteins/metabolism , Animals , Mitochondria/metabolism , Mitochondria/drug effects , Amide Synthases
2.
Article in English | MEDLINE | ID: mdl-37723959

ABSTRACT

BACKGROUND: In pediatrics, developing new pharmaceutical forms that offer safety and efficacy is crucial to improve pediatric pharmaceutical care. Orodispersible tablets do not require swallowing because orodispersible tablets dissolve quickly in the mouth, reducing the risk of choking and making medication administration safer and more straightforward. There is no solid dosage form in the pharmaceutical market offering a unit dose of Levothyroxine for pediatric hypothyroidism patients. OBJECTIVE: The objective of this study is to design and develop Orodispersible mini tablets of Levothyroxine Sodium (LT4 ODMTs) for pediatric doses. METHODS: LT4 ODMTs were prepared by direct compression with 10 and 15 µg, respectively, using StarLac® and Disolcel® as excipients. United States Pharmacopeia (USP-43) guidelines evaluated and determined pre-compression properties and quality control parameters. RESULTS: The LT4 ODMTs met the specified limits for quality controls. The Drug Content Uniformity was 97%, Hardness was less than 2.5 N, Friability was less than 0.3%, Disintegration time was less than 25 s, and dissolution profiles (Q 80% > 45 s) followed the USP requirements. Additionally, stability and microbiology assays were realized. CONCLUSION: These formulations are optimal for developing new LT4 ODMTs suitable for treating pediatric hypothyroidism.

3.
J Nat Prod ; 86(4): 797-803, 2023 04 28.
Article in English | MEDLINE | ID: mdl-36857574

ABSTRACT

Leishmaniasis is a neglected disease caused by flagellated parasites of the Leishmania genus affecting more than 10 million people worldwide. Current treatments for leishmaniasis involve the administration of poorly tolerated drugs with toxic side effects in patients. There is an imperative necessity for novel compounds to treat this disease. One of the most used strategies in the search for different antiparasitic compounds is the screening of purified plant molecules. The diterpenes 12-hydroxy-11,14-diketo-6,8,12-abietatrien-19,20-olide (HABTO) and 5-epi-icetexone (ICTX) isolated from Salvia cuspidata were shown to be effective against Leishmania amazonensis in vitro and in vivo. They displayed an antiproliferative effect against L. amazonensis promastigotes. They also induce an increase in ROS levels and affect the mitochondrial activity of parasites. HABTO and ICTX in an in vivo model of cutaneous leishmaniasis decrease footpad swelling, parasite load, and splenic index. Moreover, they induce significant reduction in the O.D. of total anti-Leishmania IgG and IgG1 subtype antibody responses against L. amazonensis compared to the PBS group but maintain high levels of IgG2a. This suggests that in HABTO- or ICTX-treated mice, there is a slowdown in the progression of the disease. These terpenes could be considered as possible novel antileishmanial agents against L. amazonensis and thus treat cutaneous leishmaniasis.


Subject(s)
Antiprotozoal Agents , Leishmania mexicana , Leishmania , Leishmaniasis, Cutaneous , Salvia , Animals , Mice , Antiparasitic Agents/pharmacology , Antiprotozoal Agents/pharmacology , Antiprotozoal Agents/therapeutic use , Leishmaniasis, Cutaneous/drug therapy , Mice, Inbred BALB C , Terpenes/pharmacology
4.
Nat Prod Res ; 35(22): 4703-4708, 2021 Nov.
Article in English | MEDLINE | ID: mdl-31920108

ABSTRACT

A phytochemical study was performed on three native plant species from the central-western zone of Argentina: Buddleja cordobensis Grisebach, Baccharis salicina Torr. & A. Gray and Nepeta cataria L. We could obtain verbascoside (1) from B. cordobensis. From N. cataria, we could obtain 1, 5, 9-epi-deoxyloganic acid (2) L. Finally, we could isolate 2-ß-(L-rhamnopyranosyl)-3-angeloyloxy-15-acetyloxy-7,13(14)-E-dien-ent-labdane (3) and 2-ß-(L-rhamnopyranosyl)-3-α-angeloyloxy-15-hydroxy-7,13(14)-E-dien-ent-labdane (4) from B. salicina. Moreover, three derivatives from 1, and one semi-synthetic derivative from 2, were prepared. PCR reaction was used to analyse the activity against DNA polymerase and cell culture to determine cytotoxicity and antitumoral activity. Verbascoside (1) was strongly active in the nanomolar scale (IC50 = 356 nM) against DNA polymerization. Moreover, verbascoside was also strongly active in the nanomolar scale against human melanoma cell line (IC50 = 256 nM) and human colorectal cell line (IC50 = 320 nM). Furthermore, derivatives 6 and 7 were cytotoxic against both cancer cell lines.


Subject(s)
Buddleja , Glycosides , Glucosides/pharmacology , Glycosides/pharmacology , Humans , Phenols
5.
Curr Drug Deliv ; 17(6): 505-510, 2020.
Article in English | MEDLINE | ID: mdl-32384031

ABSTRACT

BACKGROUND: In many countries, hypertension in the pediatric population is considered a serious risk of mortality and morbidity. In this respect, it is central to design and develop new pharmaceutical forms for pediatric patients with hypertension. The development of Orodispersible Mini-Tablets (ODMTs) for pediatric use has gained importance in recent years. Therefore, regulations for developing suitable and palatable dosage forms for pediatric patients have been established by WHO authorities. OBJECTIVE: This study aimed to design and develop orodispersible mini tablets of enalapril maleate (EnM ODMTs) for pediatric use. METHODS: Five pharmaceutical formulations (A, B, C, D and E, shown in Table 1) were designed. The effects of different co-processed excipients and active pharmaceutical ingredients at different doses were studied. Lactose co-processed excipients selected were the following: Tablettose® 80, Microce- Lac® 100 and StarLac®. The micromeritic properties for all the physical mixtures were examined. The mini tablets were obtained by direct compression. Quality control parameters were determined in accordance with US Pharmacopeia. RESULTS: Three OMDTs with StarLac® showed good results of hardness, flow ability and fast disintegration. The formulation with 0.1 mg of enalapril maleate presented the best results for the official parameters of hardness (4.0 kp), friability (< 1%), disintegration time (28 s), drug content uniformity (103.6 %), and wetting time (23 s). CONCLUSION: The three OMDTs with StarLac® showed good quality parameters, according to official requirements. Formulation A exhibited the best wetting time, complying with the dose recommended for pediatric patients. This formulation could be considered eligible for being manufactured at industrial scale.


Subject(s)
Antihypertensive Agents/administration & dosage , Enalapril/administration & dosage , Administration, Oral , Antihypertensive Agents/chemistry , Child , Drug Compounding , Enalapril/chemistry , Humans , Tablets
6.
Photochem Photobiol ; 96(5): 1005-1013, 2020 09.
Article in English | MEDLINE | ID: mdl-32220075

ABSTRACT

Essential oils are a mixture of volatile compounds, products of the secondary metabolism of plants. Once extracted, they can be deteriorated losing their organoleptic and therapeutic properties due to various environmental factors, being light exposure in aerobic conditions the main cause. In this work, the oregano essential oil extraction and characterization from Origanum vulgare plants grown in the experimental field of the FTU-UNSL and its photodegradation in MeOH:H2 O 60:40 v/v solvent were studied. Characterization by EIMS and NIST Mass Spectrometry indicates the main compounds of oregano essential oil, quantified in the extracted oil by GC-MS, are carvacrol (7.14%) and thymol (47.37%). Degradation of essential oil and its two major components can be caused by reactive oxygen species photogenerated from endogenous sensitizers as riboflavin. Our results suggest degradation occurs involving singlet molecular oxygen. Interaction of carvacrol and thymol with singlet oxygen is mainly a physical process, while essential oil has an important reactive component, which indicates there might be other constituents which could contribute to reactive photoprotection. The effect of simultaneous presence of oregano essential oil and tryptophan amino acid-used as a photooxidizable model under riboflavin-photosensitizing conditions-was studied in order to evaluate the possible photoprotection exerted by the essential oil.


Subject(s)
Light , Oils, Volatile/chemistry , Origanum/chemistry , Plant Oils/chemistry , Singlet Oxygen/chemistry , Cymenes/analysis , Gas Chromatography-Mass Spectrometry , Photolysis , Radiation-Protective Agents/chemistry , Spectrophotometry, Ultraviolet , Thymol/analysis
7.
Chem Biol Interact ; 256: 220-7, 2016 Aug 25.
Article in English | MEDLINE | ID: mdl-27423764

ABSTRACT

Flavonoids have attracted great interest due to their possible anticancer activities. Here we investigated the antiproliferative activity of the flavonoids isolated from Baccharis scandens against human leukemia cell lines and found that the methoxyflavonoid gardenin B was the most cytotoxic compound against HL-60 and U-937 cells, showing IC50 values between 1.6 and 3.0 µM, but had no significant cytotoxic effects against quiescent or proliferating human peripheral blood mononuclear cells. These effects on viability were accompanied by the concentration- and time-dependent appearance of apoptosis as evidenced by DNA fragmentation, formation of apoptotic bodies and a sub-G1 ratio increase. Comparative studies with the best-studied bioflavonoid quercetin indicate that gardenin B is a more cytotoxic and more apoptotic inducer than quercetin. Cell death induced by gardenin B was associated with: (i) a significant induction of caspase-2, -3, -8 and -9 activities; (ii) cleavage of the initiator caspases (caspase-2, -8 and -9), of the executioner caspase-3, and of poly(ADP-ribose) polymerase; and (iii) a concentration-dependent reactive oxygen species generation. In conclusion, apoptosis induced by gardenin B is associated with activation of both the extrinsic and the intrinsic apoptotic pathways of cell death and occurs through a mechanism that is independent of the generation of reactive oxygen species.


Subject(s)
Antineoplastic Agents, Phytogenic/pharmacology , Apoptosis/drug effects , Caspases/metabolism , Flavones/pharmacology , Leukemia/drug therapy , Reactive Oxygen Species/metabolism , Antineoplastic Agents, Phytogenic/chemistry , Baccharis/chemistry , Cell Line, Tumor , Cell Proliferation/drug effects , Flavones/chemistry , HL-60 Cells , Humans , Leukemia/metabolism , Leukocytes, Mononuclear/drug effects , Leukocytes, Mononuclear/metabolism , Poly(ADP-ribose) Polymerases/metabolism
8.
Rapid Commun Mass Spectrom ; 28(24): 2690-4, 2014 Dec 30.
Article in English | MEDLINE | ID: mdl-25380490

ABSTRACT

RATIONALE: Sauroxine and N-demethylsauroxine are lycodine-type Lycopodium alkaloids. In recent years, Lycopodium alkaloids have gained significant interest due to their unique skeletal characteristics as well as due to their acetylcholinesterase activity. It is known that drugs that inhibit acetylcholinesterase can be used to treat the early stages of Alzheimer's disease. METHODS: Sauroxine and N-demethylsauroxine were isolated from the aerial parts of Huperzia saururus (Lam.) Trevis. Electron ionization mass spectrometry (EI-MS) (low resolution) and collision-induced dissociation tandem mass spectrometry (CID-MS/MS) fragmentation was conducted using an ion trap, GCQ Plus mass spectrometer with MS/MS. Electron ionization high-resolution mass spectrometry (EI-HRMS) was performed in a magnetic sector mass spectrometer (Micromass VG). RESULTS: Using GC/EI-CID-MS/MS we obtained different fragmentation routes that connect all the ionic populations. In addition, the use of EI-HRMS allowed us to measure the exact masses of all the fragment ions, and, with all this information gathered, we tried to establish a fragmentation scheme concordant with the ascendant and descendant species. CONCLUSIONS: The mass spectrometry studies presented in this work complete our mass studies of Lycopodium alkaloids. The mass spectrometry work presented has been very useful to confirm the structures as well as to support the biogenetic relationships between the lycodine-type Lycopodium alkaloids: sauroxine and N-demethylsauroxine.


Subject(s)
Alkaloids/chemistry , Heterocyclic Compounds, 4 or More Rings/chemistry , Lycopodium/chemistry , Spectrometry, Mass, Electrospray Ionization/methods , Gas Chromatography-Mass Spectrometry/methods , Ions/chemistry , Plant Extracts/chemistry , Tandem Mass Spectrometry/methods
9.
J Neurochem ; 129(5): 864-76, 2014 Jun.
Article in English | MEDLINE | ID: mdl-24673250

ABSTRACT

Two semisynthetic acetyl derivatives of the alkaloid sauroine from Huperzia saururus, monoacetyl sauroine, and diacetyl sauroine (DAS) were obtained and their chemical structures were analyzed by NMR. While monoacetyl sauroine is the typical product of acetylation, DAS is an unexpected derivative related to the keto-enol formation of sauroine. Recordings of field excitatory post-synaptic potentials from the CA1 region of rat hippocampal slices showed that only DAS acutely applied induced chemical long-term potentiation (LTP) in a dose-dependent manner with an EC50 of 1.15 ± 0.09 µM. This effect was blocked by 10 µM D(-)-2-amino-5-phosphonopentanoic acid (AP5), suggesting dependence on the NMDA receptor. DAS significantly increased NMDA receptor-dependent excitatory post-synaptic currents without affecting α-amino-3-hydroxy-5-methylisoxazole-4-propionate receptor-dependent currents. Repetitive administration of DAS improved visuo-spatial learning in the Morris Water Maze. In slices from rats tested in the Morris Water Maze, LTP resulting from electrical synaptic stimulation was 2.5 times larger than in controls. Concentration of DAS measured in the brain after repetitive administration was 29.5 µM. We conclude that slices perfused with DAS display a robust NMDA receptor-dependent chemical LTP. During chronic treatment, DAS enhances learning abilities through a metaplastic mechanism as revealed by the augmentation of LTP in slices. DAS, therefore, may be a promising compound as a nootropic therapeutic drug. A semisynthetic derivative of sauroine, diacetyl sauroine (DAS), induces chemical long-term potentiation in rat hippocampal slices increasing the NMDA receptor-dependent current. 2 mg/kg prior to each session in a Morris Water Maze (MWM) improves behavior performance. In slices prepared from the tested rats the electrical stimulation-dependent long-term potentiation (LTP) was greatly enhanced. Therefore, DAS may have potency as a nootropic drug against the memory decline.


Subject(s)
Alkaloids/pharmacology , Hippocampus/drug effects , Huperzia/chemistry , Long-Term Potentiation/drug effects , Maze Learning/drug effects , Nootropic Agents , Alkaloids/pharmacokinetics , Animals , Brain/metabolism , CA1 Region, Hippocampal/drug effects , CA3 Region, Hippocampal/drug effects , Dose-Response Relationship, Drug , Electrophysiological Phenomena/drug effects , Excitatory Postsynaptic Potentials/drug effects , Magnetic Resonance Spectroscopy , Neuronal Plasticity/drug effects , Psychomotor Performance/drug effects , Rats , Rats, Sprague-Dawley , Receptors, N-Methyl-D-Aspartate/drug effects , Structure-Activity Relationship , Synapses/drug effects
10.
Steroids ; 72(8): 643-52, 2007 Jul.
Article in English | MEDLINE | ID: mdl-17572462

ABSTRACT

5,6-Epoxycholestan-3beta-ol derivatives were hydrolyzed in a diastereoconvergent manner by growing and resting cells of several strains of Aspergillus niger, particularly A. niger ATCC 11394. These strains displayed opposite regioselectivity toward each isomer in an alpha and beta epoxide mixture, thus, the nucleophilic attack took place at the less substituted and the most substituted carbon atom on each diasteromer, respectively. These biocatalysts opened trisubstituted oxiranes but were unable to hydrolyze the disubstituted oxiranes in the tested sterol derivatives. These findings suggest that A. niger strains possess another hydrolytic ability different from the commercial A. niger epoxide hydrolase (EH) that did not accept this kind of steroidal oxiranes as substrates.


Subject(s)
Aspergillus niger/metabolism , Epoxide Hydrolases/metabolism , Epoxy Compounds/chemistry , Ethylene Oxide/chemistry , Biotransformation , Ethylene Oxide/metabolism , Hydrolysis , Kinetics , Models, Molecular , Molecular Structure , Stereoisomerism
11.
Phytochemistry ; 61(8): 899-905, 2002 Dec.
Article in English | MEDLINE | ID: mdl-12453514

ABSTRACT

Two clerodane-type diterpene glycosides esters, which were studied as peracetyl derivatives, together with the known diterpene marrubiagenine, were isolated from the aerial part of Baccharis sagittalis (Less). Their structures were established by spectroscopic methods. Antifeedant activity toward Tenebrio molitor larvae of the isolated compounds along with six other diterpenes was evaluated and some structure-antifeedant bioactivity relationships are reported.


Subject(s)
Baccharis/chemistry , Diterpenes, Clerodane , Diterpenes/chemistry , Diterpenes/isolation & purification , Diterpenes/pharmacology , Insecticides/isolation & purification , Insecticides/pharmacology , Animals , Feeding Behavior/drug effects , Insecticides/chemistry , Larva/drug effects , Magnetic Resonance Spectroscopy , Models, Molecular , Molecular Structure , Plant Components, Aerial/chemistry , Tenebrio/drug effects
SELECTION OF CITATIONS
SEARCH DETAIL