Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
J Diabetes Complications ; 37(5): 108455, 2023 05.
Article in English | MEDLINE | ID: mdl-36963291

ABSTRACT

AIM: Evaluate the development of multiple complications, their interactions, and common mechanisms in the same individual with T2D. MATERIAL AND METHODS: 4-week-old male C57BL/6J mice were divided into: control (n = 6) and T2D (n = 6). T2D was induced through a high-carbohydrate-diet and low doses of streptozotocin. T2D was validated by metabolic parameters. Diabetic neuropathy was evaluated by mechanical and thermal sensitivity tests. We performed a histopathological analysis of the heart, kidney, liver, and parotid salivary glands and changes in bone microarchitecture by µCT. We calculated the relative risk (RR), odd ratios (OR) and Pearson correlation coefficients between the different complications and metabolic features. RESULTS: T2D mice have cardiomyopathy, neuropathy, nephropathy, liver steatosis and fibrosis, structural damage in parotid salivary glands, and bone porosity. RR analysis shows that all complications are interrelated by hyperglycaemia, insulin resistance, obesity, and systemic inflammation. CONCLUSIONS: T2D mice develop multiple complications simultaneously, which are related to each other, and this is associated with metabolic alterations. Our findings open up new approaches for the study and new therapeutic approaches of the pathophysiology of T2D and its complications.


Subject(s)
Diabetes Complications , Diabetes Mellitus, Type 2 , Insulin Resistance , Male , Mice , Animals , Mice, Inbred C57BL , Diabetes Complications/complications , Disease Models, Animal
2.
Exp Brain Res ; 241(2): 417-425, 2023 Feb.
Article in English | MEDLINE | ID: mdl-36571635

ABSTRACT

Intermittent ethanol consumption changes the neuronal activity of the orbitofrontal cortex (OFC) in rodents, which has been attributed to important participation in the development of addiction, particularly alcoholism. The OFC participates in gustatory sensory integration. However, it is unknown whether this region can encode chemosensory elements of oral ethanol administration independently of the consumption movement (orofacial motor response) when administered for the first time (naïve mice). To answer this question, we used a sedated mouse model and a temporary analysis protocol to register extracellular neuronal responses during the oral administration of ethanol. Our results show an increase in neuronal frequency (in the first 500 ms) when low (0.6, 1, and 2.1 M) and high (3.2, 4.3, and 8.6 M) concentrations of ethanol are orally administered. The modulatory effect of ethanol was observed from low and high concentrations and differed from the tastants. There was consistent neuronal activity independent of the concentration of ethanol. Our results demonstrate a sensory representation of oral ethanol stimulation in the OFC neurons of naïve mice under sedation.


Subject(s)
Alcoholism , Ethanol , Mice , Animals , Ethanol/pharmacology , Prefrontal Cortex/physiology , Neurons/physiology , Sensation
3.
Bone ; 155: 116292, 2022 02.
Article in English | MEDLINE | ID: mdl-34896656

ABSTRACT

Type 2 diabetes mellitus (T2DM) causes an increased risk of bone fractures. However, the pathophysiology of diabetic bone fragility is not completely understood. It has been proposed that an inflammatory microenvironment in bone could be a major mechanism by inducing uncontrolled bone resorption, inadequate bone formation and consequently more porous bones. We propose that activated T-cells in the bone marrow cause a pro-inflammatory microenvironment in bone, and cause bone fragility in T2DM. We induced T2DM in C57BL/6 male mice through a hypercaloric diet rich in carbohydrates and low doses of streptozocin. In T2DM mice we inhibited systemic activation of T-cells with a fusion protein between the extracellular domain of Cytotoxic T-Lymphocyte Antigen 4 and the Fc domain of human immunoglobulin G (CTLA4-Ig). We analysed the effects of T2DM or CTLA4-Ig in lymphocyte cell subsets and antigen-presenting cells in peripheral blood and femoral bone marrow; and their effect on the metabolic phenotype, blood and bone cytokine concentration, femoral bone microarchitecture and biomechanical properties, and the number of osteoblast-like cells in the femoral endosteum. We performed a Pearson multiple correlation analysis between all variables in order to understand the global mechanism. Results demonstrated that CTLA4-Ig decreased the number of activated CD4+ T-cells in the femoral bone marrow and consequently decreased TNF-α and RANK-L concentration in bone, notably improved femoral bone microarchitecture and biomechanical properties, increased the number of osteoblast-like cells, and reduces osteoclastic activity compared to T2DM mice that did not receive the inhibitor. Interestingly, we observed that blood glucose levels and insulin resistance may be related to the increase in activated CD4+ T-cells in the bone marrow. We conclude that bone marrow activated CD4+ T-cells cause poor bone quality and insulin resistance in T2DM.


Subject(s)
Diabetes Mellitus, Type 2 , Insulin Resistance , Abatacept/metabolism , Animals , Bone Marrow/metabolism , CD4-Positive T-Lymphocytes , Diabetes Mellitus, Type 2/complications , Diabetes Mellitus, Type 2/metabolism , Female , Male , Mice , Mice, Inbred C57BL , T-Lymphocytes/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...