Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
ACS Nano ; 18(25): 16101-16112, 2024 Jun 25.
Article in English | MEDLINE | ID: mdl-38847372

ABSTRACT

One-dimensional materials have gained much attention in the last decades: from carbon nanotubes to ultrathin nanowires to few-atom atomic chains, these can all display unique electronic properties and great potential for next-generation applications. Exfoliable bulk materials could naturally provide a source for one-dimensional wires with a well-defined structure and electronics. Here, we explore a database of one-dimensional materials that could be exfoliated from experimentally known three-dimensional van der Waals compounds, searching for metallic wires that are resilient to Peierls distortions and could act as vias or interconnects for future downscaled electronic devices. As the one-dimensional nature makes these wires particularly susceptible to dynamical instabilities, we carefully characterize vibrational properties to identify stable phases and characterize electronic and dynamical properties. Our search discovers several stable wires; notably, we identify what could be the thinnest possible exfoliable metallic wire, CuC2, coming a step closer to the ultimate limit in material downscaling.

2.
Nat Chem ; 13(6): 523-529, 2021 06.
Article in English | MEDLINE | ID: mdl-33767362

ABSTRACT

Anchoring molecular catalysts on electrode surfaces combines the high selectivity and activity of molecular systems with the practicality of heterogeneous systems. Molecular catalysts, however, are far less stable than traditional heterogeneous electrocatalysts, and therefore a method to easily replace anchored molecular catalysts that have degraded could make such electrosynthetic systems more attractive. Here we applied a non-covalent 'click' chemistry approach to reversibly bind molecular electrocatalysts to electrode surfaces through host-guest complexation with surface-anchored cyclodextrins. The host-guest interaction is remarkably strong and enables the flow of electrons between the electrode and the guest catalyst. Electrosynthesis in both organic and aqueous media was demonstrated on metal oxide electrodes, with stability on the order of hours. The catalytic surfaces can be recycled by controlled release of the guest from the host cavities and the readsorption of fresh guest.

SELECTION OF CITATIONS
SEARCH DETAIL
...