Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
IEEE Trans Pattern Anal Mach Intell ; 46(4): 1996-2010, 2024 Apr.
Article in English | MEDLINE | ID: mdl-37889819

ABSTRACT

Few-shot learning (FSL) is a central problem in meta-learning, where learners must efficiently learn from few labeled examples. Within FSL, feature pre-training has become a popular strategy to significantly improve generalization performance. However, the contribution of pre-training to generalization performance is often overlooked and understudied, with limited theoretical understanding. Further, pre-training requires a consistent set of global labels shared across training tasks, which may be unavailable in practice. In this work, we address the above issues by first showing the connection between pre-training and meta-learning. We discuss why pre-training yields more robust meta-representation and connect the theoretical analysis to existing works and empirical results. Second, we introduce Meta Label Learning (MeLa), a novel meta-learning algorithm that learns task relations by inferring global labels across tasks. This allows us to exploit pre-training for FSL even when global labels are unavailable or ill-defined. Lastly, we introduce an augmented pre-training procedure that further improves the learned meta-representation. Empirically, MeLa outperforms existing methods across a diverse range of benchmarks, in particular under a more challenging setting where the number of training tasks is limited and labels are task-specific.

2.
Proc Math Phys Eng Sci ; 474(2209): 20170551, 2018 Jan.
Article in English | MEDLINE | ID: mdl-29434508

ABSTRACT

Recently, increased computational power and data availability, as well as algorithmic advances, have led machine learning (ML) techniques to impressive results in regression, classification, data generation and reinforcement learning tasks. Despite these successes, the proximity to the physical limits of chip fabrication alongside the increasing size of datasets is motivating a growing number of researchers to explore the possibility of harnessing the power of quantum computation to speed up classical ML algorithms. Here we review the literature in quantum ML and discuss perspectives for a mixed readership of classical ML and quantum computation experts. Particular emphasis will be placed on clarifying the limitations of quantum algorithms, how they compare with their best classical counterparts and why quantum resources are expected to provide advantages for learning problems. Learning in the presence of noise and certain computationally hard problems in ML are identified as promising directions for the field. Practical questions, such as how to upload classical data into quantum form, will also be addressed.

3.
Comput Intell Neurosci ; 2015: 359590, 2015.
Article in English | MEDLINE | ID: mdl-26290660

ABSTRACT

Nowadays the neuroscientific community is taking more and more advantage of the continuous interaction between engineers and computational neuroscientists in order to develop neuroprostheses aimed at replacing damaged brain areas with artificial devices. To this end, a technological effort is required to develop neural network models which can be fed with the recorded electrophysiological patterns to yield the correct brain stimulation to recover the desired functions. In this paper we present a machine learning approach to derive the input-output function of the olfactory-limbic pathway in the in vitro whole brain of guinea pig, less complex and more controllable than an in vivo system. We first experimentally characterized the neuronal pathway by delivering different sets of electrical stimuli from the lateral olfactory tract (LOT) and by recording the corresponding responses in the lateral entorhinal cortex (l-ERC). As a second step, we used information theory to evaluate how much information output features carry about the input. Finally we used the acquired data to learn the LOT-l-ERC "I/O function," by means of the kernel regularized least squares method, able to predict l-ERC responses on the basis of LOT stimulation features. Our modeling approach can be further exploited for brain prostheses applications.


Subject(s)
Entorhinal Cortex/physiology , Evoked Potentials/physiology , Neural Networks, Computer , Olfactory Pathways/physiology , Animals , Brain Mapping/methods , Electric Stimulation/methods , Electrophysiology/methods , Guinea Pigs , In Vitro Techniques
SELECTION OF CITATIONS
SEARCH DETAIL
...