Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 16 de 16
Filter
Add more filters










Publication year range
1.
Proc Natl Acad Sci U S A ; 120(39): e2301742120, 2023 Sep 26.
Article in English | MEDLINE | ID: mdl-37729204

ABSTRACT

Landauer's principle makes a strong connection between information theory and thermodynamics by stating that erasing a one-bit memory at temperature [Formula: see text] requires an average energy larger than [Formula: see text], with [Formula: see text] Boltzmann's constant. This tiny limit has been saturated in model experiments using quasistatic processes. For faster operations, an overhead proportional to the processing speed and to the memory damping appears. In this article, we show that underdamped systems are a winning strategy to reduce this extra energetic cost. We prove both experimentally and theoretically that, in the limit of vanishing dissipation mechanisms in the memory, the physical system is thermally insulated from its environment during fast erasures, i.e., fast protocols are adiabatic as no heat is exchanged with the bath. Using a fast optimal erasure protocol, we also show that these adiabatic processes produce a maximum adiabatic temperature [Formula: see text], and that Landauer's bound for fast erasures in underdamped systems becomes the adiabatic bound: [Formula: see text].

2.
Phys Rev E ; 106(1-1): 014137, 2022 Jul.
Article in English | MEDLINE | ID: mdl-35974646

ABSTRACT

The same system can exhibit a completely different dynamical behavior when it evolves in equilibrium conditions or when it is driven out-of-equilibrium by, e.g., connecting some of its components to heat baths kept at different temperatures. Here we concentrate on an analytically solvable and experimentally relevant model of such a system-the so-called Brownian gyrator-a two-dimensional nanomachine that performs a systematic, on average, rotation around the origin under nonequilibrium conditions, while no net rotation takes place under equilibrium ones. On this example, we discuss a question whether it is possible to distinguish between two types of a behavior judging not upon the statistical properties of the trajectories of components but rather upon their respective spectral densities. The latter are widely used to characterize diverse dynamical systems and are routinely calculated from the data using standard built-in packages. From such a perspective, we inquire whether the power spectral densities possess some "fingerprint" properties specific to the behavior in nonequilibrium. We show that indeed one can conclusively distinguish between equilibrium and nonequilibrium dynamics by analyzing the cross-correlations between the spectral densities of both components in the short frequency limit, or from the spectral densities of both components evaluated at zero frequency. Our analytical predictions, corroborated by experimental and numerical results, open a new direction for the analysis of a nonequilibrium dynamics.

3.
Phys Rev Lett ; 126(17): 170601, 2021 Apr 30.
Article in English | MEDLINE | ID: mdl-33988419

ABSTRACT

The Landauer principle states that at least k_{B}Tln2 of energy is required to erase a 1-bit memory, with k_{B}T the thermal energy of the system. We study the effects of inertia on this bound using as one-bit memory an underdamped micromechanical oscillator confined in a double-well potential created by a feedback loop. The potential barrier is precisely tunable in the few k_{B}T range. We measure, within the stochastic thermodynamic framework, the work and the heat of the erasure protocol. We demonstrate experimentally and theoretically that, in this underdamped system, the Landauer bound is reached with a 1% uncertainty, with protocols as short as 100 ms.

4.
Phys Rev E ; 102(5-1): 050103, 2020 Nov.
Article in English | MEDLINE | ID: mdl-33327212

ABSTRACT

An autonomous out-of-equilibrium Maxwell's demon is used to reverse the natural direction of the heat flux between two electric circuits kept at different temperatures and coupled by the electric thermal noise. The demon does not process any information, but it achieves its goal by using a frequency-dependent coupling with the two reservoirs of the system. There is no mean energy flux between the demon and the system, but the total entropy production (system+demon) is positive. The demon can be power supplied by thermocouples. The system and the demon are ruled by equations similar to those of two coupled Brownian particles and of the Brownian gyrator. Thus our results pave the way to the application of autonomous out-of-equilibrium Maxwell's demons to coupled nanosystems at different temperatures.

5.
Phys Rev E ; 99(6-1): 063302, 2019 Jun.
Article in English | MEDLINE | ID: mdl-31330737

ABSTRACT

In recent years the lattice Boltzmann (LB) methodology has been fruitfully extended to include the effects of thermal fluctuations. So far, all studied cases pertain to equilibrium fluctuations, i.e., fluctuations with respect to an equilibrium background state. In this paper we take a step further and present results of fluctuating LB simulations of a binary mixture confined between two parallel walls in the presence of a constant concentration gradient in the wall-to-wall direction. This is a paradigmatic setup for the study of nonequilibrium (NE) fluctuations, i.e., fluctuations with respect to a nonequilibrium state. We analyze the dependence of the structure factors for the hydrodynamical fields on the wave vector q in both the directions parallel and perpendicular to the walls, highlighting the long-range (∼|q|^{-4}) nature of correlations in the NE framework. Results at the small scales (high wave numbers) quantitatively agree with the predictions of fluctuating hydrodynamics without fitting parameters. At larger scales (low wave numbers), however, results show finite-size effects induced by confinement and call for further studies aimed at controlling boundary conditions in the fluctuating LB framework as well as compressibility effects. Moreover, in the presence of a nonideal equation of state of the mixture, we also observe that the (spatially homogeneous) average pressure changes, due to a genuinely new contribution triggered by NE fluctuations. These NE pressure effects are studied at changing the system size and the concentration gradient. Taken all together, we argue that the results of this article are useful and instrumental to boost the applicability of the fluctuating LB methodology in the framework of NE fluctuations, possibly in conjunction with experiments.

6.
Phys Rev E ; 98(1-1): 010104, 2018 Jul.
Article in English | MEDLINE | ID: mdl-30110875

ABSTRACT

We provide a theoretical and experimental protocol that dynamically controls the effective temperature of a thermal bath, through a well-designed noise engineering. We use this powerful technique to shortcut the relaxation of an overdamped Brownian particle in a quadratic potential by a joint time engineering of the confinement strength and of the noise. For an optically trapped colloid, we report an equilibrium recovery time reduced by about two orders of magnitude compared to the natural relaxation time. Our scheme paves the way towards reservoir engineering in nanosystems.

7.
Phys Rev E ; 94(4-1): 040102, 2016 Oct.
Article in English | MEDLINE | ID: mdl-27841545

ABSTRACT

We show that critical Casimir effects can be accessed through direct simulation of a model binary fluid passing through the demixing transition. We work in the semi-grand-canonical ensemble, in slab geometry, in which the Casimir force appears as the excess of the generalized pressure, P_{⊥}-nµ. The excesses of the perpendicular pressure, P_{⊥}, and of nµ, are individually of much larger amplitude. A critical pressure anisotropy is observed between forces parallel and perpendicular to the confinement direction, which collapses onto a universal scaling function closely related to that of the critical Casimir force.

8.
Phys Rev E ; 94(2-1): 022144, 2016 Aug.
Article in English | MEDLINE | ID: mdl-27627283

ABSTRACT

We analyze experimental data obtained from an electrical circuit having components at different temperatures, showing how to predict its response to temperature variations. This illustrates in detail how to utilize a recent linear response theory for nonequilibrium overdamped stochastic systems. To validate these results, we introduce a reweighting procedure that mimics the actual realization of the perturbation and allows extracting the susceptibility of the system from steady-state data. This procedure is closely related to other fluctuation-response relations based on the knowledge of the steady-state probability distribution. As an example, we show that the nonequilibrium heat capacity in general does not correspond to the correlation between the energy of the system and the heat flowing into it. Rather, also nondissipative aspects are relevant in the nonequilibrium fluctuation-response relations.

9.
Nat Phys ; 12(9): 843-846, 2016 Sep.
Article in English | MEDLINE | ID: mdl-27610190

ABSTRACT

A fundamental and intrinsic property of any device or natural system is its relaxation time relax, which is the time it takes to return to equilibrium after the sudden change of a control parameter [1]. Reducing τrelax, is frequently necessary, and is often obtained by a complex feedback process. To overcome the limitations of such an approach, alternative methods based on driving have been recently demonstrated [2, 3], for isolated quantum and classical systems [4-9]. Their extension to open systems in contact with a thermostat is a stumbling block for applications. Here, we design a protocol, named Engineered Swift Equilibration (ESE), that shortcuts time-consuming relaxations, and we apply it to a Brownian particle trapped in an optical potential whose properties can be controlled in time. We implement the process experimentally, showing that it allows the system to reach equilibrium times faster than the natural equilibration rate. We also estimate the increase of the dissipated energy needed to get such a time reduction. The method paves the way for applications in micro and nano devices, where the reduction of operation time represents as substantial a challenge as miniaturization [10].

10.
Article in English | MEDLINE | ID: mdl-26651700

ABSTRACT

We report the observation of a surprising phenomenon consisting in a oscillating phase transition which appears in a binary mixture when this is enlightened by a strongly focused infrared laser beam. The mixture is poly-methyl-meth-acrylate (PMMA)-3-octanone, which has an upper critical solution temperature at T(c)=306.6K and volume fraction ϕ(c)=12.8% [Crauste et al., arXiv:1310.6720, 2013]. We describe the dynamical properties of the oscillations, which are produced by a competition between various effects: the local accumulation of PMMA produced by the laser beam, thermophoresis, and nonlinear diffusion. We show that the main properties of this kind of oscillations can be reproduced in the Landau theory for a binary mixture in which a local driving mechanism, simulating the laser beam, is introduced.

11.
Rev Sci Instrum ; 86(4): 044702, 2015 Apr.
Article in English | MEDLINE | ID: mdl-25933875

ABSTRACT

We present an innovative technique which allows the simultaneous measurement of the dielectric constant of a material at many frequencies, spanning a four orders of magnitude range chosen between 10(-2) Hz and 10(4) Hz. The sensitivity and accuracy are comparable to those obtained using standard single frequency techniques. The technique is based on three new and simple features: (a) the precise real time correction of the amplification of a current amplifier, (b) the specific shape of the excitation signal and its frequency spectrum, and (c) the precise synchronization between the generation of the excitation signal and the acquisition of the dielectric response signal. This technique is useful in the case of relatively fast dynamical measurements when the knowledge of the time evolution of the dielectric constant is needed.

12.
Nat Nanotechnol ; 9(5): 334-5, 2014 May.
Article in English | MEDLINE | ID: mdl-24801538
13.
Nature ; 483(7388): 187-9, 2012 Mar 07.
Article in English | MEDLINE | ID: mdl-22398556

ABSTRACT

In 1961, Rolf Landauer argued that the erasure of information is a dissipative process. A minimal quantity of heat, proportional to the thermal energy and called the Landauer bound, is necessarily produced when a classical bit of information is deleted. A direct consequence of this logically irreversible transformation is that the entropy of the environment increases by a finite amount. Despite its fundamental importance for information theory and computer science, the erasure principle has not been verified experimentally so far, the main obstacle being the difficulty of doing single-particle experiments in the low-dissipation regime. Here we experimentally show the existence of the Landauer bound in a generic model of a one-bit memory. Using a system of a single colloidal particle trapped in a modulated double-well potential, we establish that the mean dissipated heat saturates at the Landauer bound in the limit of long erasure cycles. This result demonstrates the intimate link between information theory and thermodynamics. It further highlights the ultimate physical limit of irreversible computation.

14.
Phys Rev Lett ; 99(20): 205502, 2007 Nov 16.
Article in English | MEDLINE | ID: mdl-18233157

ABSTRACT

We study experimentally the slow growth of a single crack in polycarbonate films submitted to uniaxial and constant imposed stress. For this viscoplastic material, we uncover a dynamical law that describes the dependence of the instantaneous crack velocity with experimental parameters. The law involves a Dugdale-Barenblatt static description of crack tip plastic zones associated to an Eyring's law and an empirical dependence with the crack length that may come from a residual elastic field.

15.
Phys Rev Lett ; 93(9): 095505, 2004 Aug 27.
Article in English | MEDLINE | ID: mdl-15447114

ABSTRACT

We study experimentally the slow growth of a single crack in a fibrous material and observe stepwise growth dynamics. We model the material as a lattice where the crack is pinned by elastic traps and grows due to thermally activated stress fluctuations. In agreement with experimental data we find that the distribution of step sizes follows subcritical point statistics with a power law (exponent 3/2) and a stress-dependent exponential cutoff diverging at the critical rupture threshold.

16.
Phys Rev E Stat Nonlin Soft Matter Phys ; 66(2 Pt 2): 026107, 2002 Aug.
Article in English | MEDLINE | ID: mdl-12241237

ABSTRACT

The average time for the onset of macroscopic fractures is analytically and numerically investigated in the fiber-bundle model with quenched disorder and thermal noise under a constant load. We find an implicit exact expression for the failure time in the low-temperature limit that is accurately confirmed by direct simulations. The effect of the disorder is to lower the energy barrier.

SELECTION OF CITATIONS
SEARCH DETAIL
...