Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Food Technol Biotechnol ; 55(2): 151-163, 2017 Jun.
Article in English | MEDLINE | ID: mdl-28867945

ABSTRACT

This study characterises the genetic variability of local pomegranate (Punica granatum L.) germplasm from the Slovenian and Croatian areas of Istria. The bioactive components and antioxidant and antimicrobial properties of ethanol and water extracts of different parts of pomegranate fruit were also determined, along with their preliminary nutritional characterisation. Twenty-six different genotypes identified with microsatellite analysis indicate the great diversity of pomegranate in Istria. The pomegranate fruit ethanol extracts represent rich sources of phenolic compounds (mean value of the mass fraction in exocarp and mesocarp expressed as gallic acid is 23 and 16 mg/g, respectively). The ethanol extracts of pomegranate exocarp and mesocarp showed the greatest antimicrobial activity against Candida albicans, Candida parapsilosis, Rhodotorula mucilaginosa, Exophiala dermatitidis and Staphylococcus aureus, and the same water extracts against S. aureus and Escherichia coli. To the best of our knowledge, this study represents the first report of the characterisation of pomegranate genetic resources from Istria at different levels, including the molecular, chemical, antimicrobial and nutritional properties.

2.
G3 (Bethesda) ; 7(7): 2015-2022, 2017 07 05.
Article in English | MEDLINE | ID: mdl-28500048

ABSTRACT

Extremophilic organisms demonstrate the flexibility and adaptability of basic biological processes by highlighting how cell physiology adapts to environmental extremes. Few eukaryotic extremophiles have been well studied and only a small number are amenable to laboratory cultivation and manipulation. A detailed characterization of the genome architecture of such organisms is important to illuminate how they adapt to environmental stresses. One excellent example of a fungal extremophile is the halophile Hortaea werneckii (Pezizomycotina, Dothideomycetes, Capnodiales), a yeast-like fungus able to thrive at near-saturating concentrations of sodium chloride and which is also tolerant to both UV irradiation and desiccation. Given its unique lifestyle and its remarkably recent whole genome duplication, H. werneckii provides opportunities for testing the role of genome duplications and adaptability to extreme environments. We previously assembled the genome of H. werneckii using short-read sequencing technology and found a remarkable degree of gene duplication. Technology limitations, however, precluded high-confidence annotation of the entire genome. We therefore revisited the H. wernickii genome using long-read, single-molecule sequencing and provide an improved genome assembly which, combined with transcriptome and nucleosome analysis, provides a useful resource for fungal halophile genomics. Remarkably, the ∼50 Mb H. wernickii genome contains 15,974 genes of which 95% (7608) are duplicates formed by a recent whole genome duplication (WGD), with an average of 5% protein sequence divergence between them. We found that the WGD is extraordinarily recent, and compared to Saccharomyces cerevisiae, the majority of the genome's ohnologs have not diverged at the level of gene expression of chromatin structure.


Subject(s)
Ascomycota/genetics , Chromatin/physiology , Gene Duplication , Gene Expression Regulation, Fungal/physiology , Genome, Fungal/physiology
3.
Food Sci Nutr ; 5(1): 160-170, 2017 01.
Article in English | MEDLINE | ID: mdl-28070327

ABSTRACT

Celtis australis is a deciduous tree commonly known as Mediterranean hackberry or the European nettle tree. The fruit of hackberry are seldom used for nutritional purposes. The nutritional and physicochemical properties of ripe hackberry fruit from Istria (Marasi village near Vrsar, Croatia) were determined, including water, total fiber, protein, vitamin, mineral, and phenolic contents. This analysis demonstrates that the hackberry fruit is a valuable source of dietary fiber, protein, and vitamins, and of pigments such as lutein, ß-carotene, zeaxanthin, and tocopherols. The seasonal differences associated with the different growth stages for the element composition, total phenolic content, and phenolic profile were also determined for hackberry mesocarp and leaves. Water and ethanol extracts were prepared from mesocarp and leaves harvested at different growth stages and their phenolic profiles and antioxidant and antimicrobial activities were investigated. This study demonstrates that water and ethanol extracts of hackberry fruit and leaves collected at different growth stages contain epicatechin, gallic acid, vanillic acid, 3,4-dihydroxybenzaldehyde, delphinidin-3,5-di-O-glucoside, cyanidin-3,5-di-O-glucoside, and pelargonidin-3,5-di-O-glucoside. They also show some antimicrobial and antifungal activities. Further studies are needed to identify and define the active ingredients of these hackberry leaf ethanol extracts.

4.
Adv Exp Med Biol ; 892: 307-325, 2016.
Article in English | MEDLINE | ID: mdl-26721280

ABSTRACT

Fungi that tolerate very high environmental NaCl concentrations are good model systems to study mechanisms that enable them to endure osmotic and salinity stress. The whole genome sequences of six such fungal species have been analysed: Hortaea werneckii, Wallemia ichthyophaga and four Aureobasidium spp.: A. pullulans, A. subglaciale, A. melanogenum and A. namibiae. These fungi show different levels of halotolerance, with the presence of numerous membrane transport systems uncovered here that are believed to maintain physiological intracellular concentrations of alkali metal cations. Despite some differences, the intracellular cation contents of H. werneckii, A. pullulans and W. ichthyophaga remain low even under extreme extracellular salinities, which suggests that these species have efficient cation transport systems. We speculate that cation transporters prevent intracellular accumulation of Na(+), and thus avoid the toxic effects that such Na(+) accumulation would have, while also maintaining the high K(+)/Na(+) ratio that is required for the full functioning of the cell - another crucial task in high-Na(+) environments. This chapter primarily summarises the cation transport systems of these selected fungi, and it also describes other membrane transporters that might be involved in their mechanisms of halotolerance.


Subject(s)
Basidiomycota/metabolism , Fungal Proteins/metabolism , Saccharomycetales/metabolism , Sodium Chloride/metabolism , Basidiomycota/drug effects , Basidiomycota/genetics , Fungal Proteins/genetics , Gene Expression , H(+)-K(+)-Exchanging ATPase/genetics , H(+)-K(+)-Exchanging ATPase/metabolism , Ion Transport , Osmotic Pressure , Potassium Channels/genetics , Potassium Channels/metabolism , Saccharomycetales/drug effects , Saccharomycetales/genetics , Salinity , Salt Tolerance , Sodium Chloride/pharmacology , Sodium-Hydrogen Exchangers/genetics , Sodium-Hydrogen Exchangers/metabolism , Sodium-Phosphate Cotransporter Proteins, Type III/genetics , Sodium-Phosphate Cotransporter Proteins, Type III/metabolism , Sodium-Potassium-Exchanging ATPase/genetics , Sodium-Potassium-Exchanging ATPase/metabolism , Stress, Physiological
5.
PLoS One ; 8(8): e71328, 2013.
Article in English | MEDLINE | ID: mdl-23977017

ABSTRACT

Hortaea werneckii, ascomycetous yeast from the order Capnodiales, shows an exceptional adaptability to osmotically stressful conditions. To investigate this unusual phenotype we obtained a draft genomic sequence of a H. werneckii strain isolated from hypersaline water of solar saltern. Two of its most striking characteristics that may be associated with a halotolerant lifestyle are the large genetic redundancy and the expansion of genes encoding metal cation transporters. Although no sexual state of H. werneckii has yet been described, a mating locus with characteristics of heterothallic fungi was found. The total assembly size of the genome is 51.6 Mb, larger than most phylogenetically related fungi, coding for almost twice the usual number of predicted genes (23333). The genome appears to have experienced a relatively recent whole genome duplication, and contains two highly identical gene copies of almost every protein. This is consistent with some previous studies that reported increases in genomic DNA content triggered by exposure to salt stress. In hypersaline conditions transmembrane ion transport is of utmost importance. The analysis of predicted metal cation transporters showed that most types of transporters experienced several gene duplications at various points during their evolution. Consequently they are present in much higher numbers than expected. The resulting diversity of transporters presents interesting biotechnological opportunities for improvement of halotolerance of salt-sensitive species. The involvement of plasma P-type H⁺ ATPases in adaptation to different concentrations of salt was indicated by their salt dependent transcription. This was not the case with vacuolar H⁺ ATPases, which were transcribed constitutively. The availability of this genomic sequence is expected to promote the research of H. werneckii. Studying its extreme halotolerance will not only contribute to our understanding of life in hypersaline environments, but should also identify targets for improving the salt- and osmotolerance of economically important plants and microorganisms.


Subject(s)
Cation Transport Proteins/genetics , Fungal Proteins/genetics , Gene Expression Regulation, Fungal , Genome, Fungal , Saccharomycetales/genetics , Salt Tolerance/genetics , Amino Acid Sequence , Cation Transport Proteins/classification , Cation Transport Proteins/metabolism , Fungal Proteins/classification , Fungal Proteins/metabolism , Gene Dosage , Gene Duplication , Genome Size , Ion Transport , Molecular Sequence Data , Osmotic Pressure , Phylogeny , Saccharomycetales/classification , Saccharomycetales/metabolism , Salts/metabolism , Sequence Alignment , Sequence Analysis, DNA , Sodium Chloride
SELECTION OF CITATIONS
SEARCH DETAIL
...