Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Phys Rev Lett ; 132(16): 160802, 2024 Apr 19.
Article in English | MEDLINE | ID: mdl-38701482

ABSTRACT

Recent developments have led to the possibility of embedding machine learning tools into experimental platforms to address key problems, including the characterization of the properties of quantum states. Leveraging on this, we implement a quantum extreme learning machine in a photonic platform to achieve resource-efficient and accurate characterization of the polarization state of a photon. The underlying reservoir dynamics through which such input state evolves is implemented using the coined quantum walk of high-dimensional photonic orbital angular momentum and performing projective measurements over a fixed basis. We demonstrate how the reconstruction of an unknown polarization state does not need a careful characterization of the measurement apparatus and is robust to experimental imperfections, thus representing a promising route for resource-economic state characterization.

2.
Phys Rev Lett ; 125(16): 160504, 2020 Oct 16.
Article in English | MEDLINE | ID: mdl-33124838

ABSTRACT

The characterization of quantum features in large Hilbert spaces is a crucial requirement for testing quantum protocols. In the continuous variable encoding, quantum homodyne tomography requires an amount of measurement that increases exponentially with the number of involved modes, which practically makes the protocol intractable even with few modes. Here, we introduce a new technique, based on a machine learning protocol with artificial neural networks, that allows us to directly detect negativity of the Wigner function for multimode quantum states. We test the procedure on a whole class of numerically simulated multimode quantum states for which the Wigner function is known analytically. We demonstrate that the method is fast, accurate, and more robust than conventional methods when limited amounts of data are available. Moreover, the method is applied to an experimental multimode quantum state, for which an additional test of resilience to losses is carried out.

3.
Phys Rev Lett ; 123(23): 230502, 2019 Dec 06.
Article in English | MEDLINE | ID: mdl-31868431

ABSTRACT

Introducing quantum sensors as a solution to real world problems demands reliability and controllability outside of laboratory conditions. Producers and operators ought to be assumed to have limited resources readily available for calibration, and yet, they should be able to trust the devices. Neural networks are almost ubiquitous for similar tasks for classical sensors: here we show the applications of this technique to calibrating a quantum photonic sensor. This is based on a set of training data, collected only relying on the available probe states, hence reducing overhead. We found that covering finely the parameter space is key to achieving uncertainties close to their ultimate level. This technique has the potential to become the standard approach to calibrate quantum sensors.

4.
Opt Express ; 27(24): 35245-35256, 2019 Nov 25.
Article in English | MEDLINE | ID: mdl-31878697

ABSTRACT

Enzymes are essential to maintain organisms alive. Some of the reactions they catalyze are associated with a change in reagents chirality, hence their activity can be tracked by using optical means. However, illumination affects enzyme activity: the challenge is to operate at low-intensity regime avoiding loss in sensitivity. Here we apply quantum phase estimation to real-time measurement of invertase enzymatic activity. Control of the probe at the quantum level demonstrates the potential for reducing invasiveness with optimized sensitivity at once. This preliminary effort, bringing together methods of quantum physics and biology, constitutes an important step towards full development of quantum sensors for biological systems.


Subject(s)
Light , Quantum Theory , beta-Fructofuranosidase/metabolism , Lasers , Photons , Saccharomyces cerevisiae/enzymology
5.
Opt Lett ; 44(1): 41-44, 2019 Jan 01.
Article in English | MEDLINE | ID: mdl-30645543

ABSTRACT

In this work, we demonstrate the use of stimulated emission tomography to characterize a hyperentangled state generated by spontaneous parametric downconversion in a cw-pumped source. In particular, we consider the generation of hyperentangled states consisting of photon pairs entangled in polarization and path. These results extend the capability of stimulated emission tomography beyond the polarization degree of freedom and demonstrate the use of this technique to study states in higher dimension Hilbert spaces.

6.
Opt Lett ; 43(16): 4045-4048, 2018 Aug 15.
Article in English | MEDLINE | ID: mdl-30106948

ABSTRACT

The simplicity of a question, such as wondering whether or not correlations characterize a certain system, collides with the experimental difficulty of accessing such information. Here we present a low-demanding experimental approach that refers to the use of a metrology scheme to obtain a conservative estimate of the strength of frequency correlations. Our test bed is the widespread case of a photon pair produced per downconversion. The theoretical architecture used to put the correlation degree on a quantitative ground is also described.

7.
Sci Rep ; 7(1): 17122, 2017 12 07.
Article in English | MEDLINE | ID: mdl-29215056

ABSTRACT

We introduce a novel diagnostic scheme for multipartite networks of entangled particles, aimed at assessing the quality of the gates used for the engineering of their state. Using the information gathered from a set of suitably chosen multiparticle Bell tests, we identify conditions bounding the quality of the entangled bonds among the elements of a register. We illustrate the effectiveness of our proposal by characterizing a quantum resource engineered combining two-photon hyperentanglement and photonic-chip technology. Our approach opens up future studies on medium-sized networks due to the intrinsically modular nature of cluster states, and paves the way to section-by-section analysis of larger photonics resources.

SELECTION OF CITATIONS
SEARCH DETAIL
...