Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Comput Methods Programs Biomed ; 239: 107623, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37276760

ABSTRACT

BACKGROUND AND OBJECTIVES: Prediction of patient deterioration is essential in medical care, and its automation may reduce the risk of patient death. The precise monitoring of a patient's medical state requires devices placed on the body, which may cause discomfort. Our approach is based on the processing of long-term ballistocardiography data, which were measured using a sensory pad placed under the patient's mattress. METHODS: The investigated dataset was obtained via long-term measurements in retirement homes and intensive care units (ICU). Data were measured unobtrusively using a measuring pad equipped with piezoceramic sensors. The proposed approach focused on the processing methods of the measured ballistocardiographic signals, Cartan curvature (CC), and Euclidean arc length (EAL). RESULTS: For analysis, 218,979 normal and 216,259 aberrant 2-second samples were collected and classified using a convolutional neural network. Experiments using cross-validation with expert threshold and data length revealed the accuracy, sensitivity, and specificity of the proposed method to be 86.51 CONCLUSIONS: The proposed method provides a unique approach for an early detection of health concerns in an unobtrusive manner. In addition, the suitability of EAL over the CC was determined.


Subject(s)
Ballistocardiography , Neural Networks, Computer , Humans , Heart Rate , Beds
2.
Comput Methods Programs Biomed ; 229: 107277, 2023 Feb.
Article in English | MEDLINE | ID: mdl-36463672

ABSTRACT

BACKGROUND AND OBJECTIVES: Nowadays, an automated computer-aided diagnosis (CAD) is an approach that plays an important role in the detection of health issues. The main advantages should be in early diagnosis, including high accuracy and low computational complexity without loss of the model performance. One of these systems type is concerned with Electroencephalogram (EEG) signals and seizure detection. We designed a CAD system approach for seizure detection that optimizes the complexity of the required solution while also being reusable on different problems. METHODS: The methodology is built-in deep data analysis for normalization. In comparison to previous research, the system does not necessitate a feature extraction process that optimizes and reduces system complexity. The data classification is provided by a designed 8-layer deep convolutional neural network. RESULTS: Depending on used data, we have achieved the accuracy, specificity, and sensitivity of 98%, 98%, and 98.5% on the short-term Bonn EEG dataset, and 96.99%, 96.89%, and 97.06% on the long-term CHB-MIT EEG dataset. CONCLUSIONS: Through the approach to detection, the system offers an optimized solution for seizure diagnosis health problems. The proposed solution should be implemented in all clinical or home environments for decision support.


Subject(s)
Neural Networks, Computer , Seizures , Humans , Seizures/diagnostic imaging , Electroencephalography/methods , Diagnosis, Computer-Assisted , Systems Analysis , Signal Processing, Computer-Assisted
3.
Comput Methods Programs Biomed ; 207: 106149, 2021 Aug.
Article in English | MEDLINE | ID: mdl-34015736

ABSTRACT

Background and Objectives Automatic detection of breathing disorders plays an important role in the early signalization of respiratory diseases. Measuring methods can be based on electrocardiogram (ECG), sound, oximetry, or respiratory analysis. However, these approaches require devices placed on the human body or they are prone to disturbance by environmental influences. To solve these problems, we proposed a heart contraction mechanical trigger for unobtrusive detection of respiratory disorders from the mechanical measurement of cardiac contractions. We designed a novel method to calculate this mechanical trigger purely from measured mechanical signals without the use of ECG. Methods The approach is a built-on calculation of the so-called euclidean arc length from the signals. In comparison to previous researches, this system does not require any equipment attached to a person. This is achieved by locating the tensometers on the bed. Data from sensors are fused by the Cartan curvatures method to beat-to-beat vector input for the Convolutional neural network (CNN) classifier. Results In sum, 2281 disordered and 5130 normal breathing samples was collected for analysis. The experiments with use of 10-fold cross validation show that accuracy, sensitivity, and specificity reach values of 96.37%, 92.46%, and 98.11% respectively. Conclusions By the approach for detection, the system offers a novel way for a completely unobtrusive diagnosis of breathing-related health problems. The proposed solution can effectively be deployed in all clinical or home environments.


Subject(s)
Electrocardiography , Respiratory Tract Diseases , Algorithms , Humans , Neural Networks, Computer
SELECTION OF CITATIONS
SEARCH DETAIL
...