Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Materials (Basel) ; 16(7)2023 Apr 04.
Article in English | MEDLINE | ID: mdl-37049179

ABSTRACT

A systematic experimental study was performed to determine laser irradiation conditions for the large-area fabrication of highly regular laser-induced periodic surface structures (HR-LIPSS) on a 220 nm thick Mo film deposited on fused silica. The LIPSS were fabricated by scanning a linearly polarized, spatially Gaussian laser beam at 1030 nm wavelength and 1.4 ps pulse duration over the sample surface at 1 kHz repetition rate. Scanning electron microscope images of the produced structures were analyzed using the criterion of the dispersion of the LIPSS orientation angle (DLOA). Favorable conditions, in terms of laser fluence and beam scanning overlaps, were identified for achieving DLOA values <10∘. To gain insight into the material behavior under these irradiation conditions, a theoretical analysis of the film heating was performed, and surface plasmon polariton excitation is discussed. A possible effect of the film dewetting from the dielectric substrate is deliberated.

2.
Opt Express ; 30(5): 7708-7715, 2022 Feb 28.
Article in English | MEDLINE | ID: mdl-35299526

ABSTRACT

We investigated the use of crystalline coatings as the highly reflective coating of an Yb:YAG thin disk directly bonded onto a silicon carbide heatsink. Compared to commonly used ion-beam-sputtered coatings, it possesses lower optical losses and higher thermal conductivity, resulting in better heat management and laser outputs. We pumped the disk up to 1.15 kW at 969 nm and reached 665 W of average output power, and disk temperature of 107 °C with a highly multi-modal V-cavity. These promising results were reached with this novel design despite the adoption of a cheap silicon carbide substrate having more than 3 times lower thermal conductivity compared to frequently used CVD diamond.

3.
Nanomaterials (Basel) ; 11(8)2021 Aug 02.
Article in English | MEDLINE | ID: mdl-34443819

ABSTRACT

Superhydrophobic surfaces attract a lot of attention due to many potential applications including anti-icing, anti-corrosion, self-cleaning or drag-reduction surfaces. Despite a list of attractive applications of superhydrophobic surfaces and demonstrated capability of lasers to produce them, the speed of laser micro and nanostructuring is still low with respect to many industry standards. Up-to-now, most promising multi-beam solutions can improve processing speed a hundred to a thousand times. However, productive and efficient utilization of a new generation of kW-class ultrashort pulsed lasers for precise nanostructuring requires a much higher number of beams. In this work, we introduce a unique combination of high-energy pulsed ultrashort laser system delivering up to 20 mJ at 1030 nm in 1.7 ps and novel Diffractive Laser-Induced Texturing element (DLITe) capable of producing 201 × 201 sub-beams of 5 µm in diameter on a square area of 1 mm2. Simultaneous nanostructuring with 40,401 sub-beams resulted in a matrix of microcraters covered by nanogratings and ripples with periodicity below 470 nm and 720 nm, respectively. The processed area demonstrated hydrophobic to superhydrophobic properties with a maximum contact angle of 153°.

4.
Micromachines (Basel) ; 12(3)2021 Mar 09.
Article in English | MEDLINE | ID: mdl-33803433

ABSTRACT

Reflectivity and surface topography of tempered glass were modified without any thermal damage to the surroundings by utilizing 1.7 ps ultrashort pulsed laser on its fundamental wavelength of 1030 nm. To speed up the fabrication, a dynamic beam shaping unit combined with a galvanometer scanning head was applied to divide the initial laser beam into a matrix of beamlets with adjustable beamlets number and separation distance. By tuning the laser and processing parameters, reflected intensity can be reduced up to 75% while maintaining 90% of transparency thus showing great potential for display functionalization of mobile phones or laptops.

5.
Materials (Basel) ; 13(20)2020 Oct 20.
Article in English | MEDLINE | ID: mdl-33092278

ABSTRACT

In this paper, we introduce a method to efficiently use a high-energy pulsed 1.7 ps HiLASE Perla laser system for two beam interference patterning. The newly developed method of large-beam interference patterning permits the production of micro and sub-micron sized features on a treated surface with increased processing throughputs by enlarging the interference area. The limits for beam enlarging are explained and calculated for the used laser source. The formation of a variety of surface micro and nanostructures and their combinations are reported on stainless steel, invar, and tungsten with the maximum fabrication speed of 206 cm2/min. The wettability of selected hierarchical structures combining interference patterns with 2.6 µm periodicity and the nanoscale surface structures on top were analyzed showing superhydrophobic behavior with contact angles of 164°, 156°, and 150° in the case of stainless steel, invar, and tungsten, respectively.

SELECTION OF CITATIONS
SEARCH DETAIL
...