Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Food Chem X ; 22: 101469, 2024 Jun 30.
Article in English | MEDLINE | ID: mdl-38808165

ABSTRACT

Kombucha is a traditional beverage produced by a living culture known as SCOBY or "symbiotic culture of bacteria and yeast". Culture-dependent production is essential for stable kombucha fermentation. The aim of this study was to design a microbial community and to determine the effect of that community on the flavor and chemical properties of kombucha. The fermentations were carried out using combinations of selected species including Pichia kudriavzevii, Brettanomyces bruxellensis, Dekkera bruxellensis, Komagataeibacter saccharivorans, Komagataeibacter xylinus, and Acetobacter papayae, which were previously isolated from kombucha. The effects of monocultures and cocultures on fermentation were investigated. The highest acetic acid producer was A. papayae, which has strong antioxidant properties. In the monoculture and coculture fermentations, aldehydes, acids, and esters were generally observed at the end of fermentation. This study confirms that microbiota reconstruction is a viable approach for achieving the production of kombucha with increased bioactive constituents and consumer acceptance.

2.
J Environ Manage ; 358: 120891, 2024 May.
Article in English | MEDLINE | ID: mdl-38652982

ABSTRACT

Photocatalysis is an effective method with the potential to eliminate pharmaceutical compounds from water sources. Manganese ferrite (MnFeO3), a type of multiferroic perovskite catalyst, has attracted significant attention due to its small band gap, however its application was limited due to its high recombination rate and low quantum efficiency. It was therefore aimed to improve the properties of MnFeO3 by doping silver (Ag)-particles. In this study, Ag-MnFeO3 photocatalysts with different Ag content (1-3 mmol%) were synthesized by performing a facile hydrothermal method. The as-prepared samples were characterized using x-ray diffraction (XRD), scanning electron microscopy with energy-dispersive X-ray spectroscopy (SEM/EDS), transmission electron microscopy (TEM), x-ray photoelectron spectroscopy (XPS), ultraviolet-visible spectroscopy (DRS), photoluminescence spectroscopy (PL), electrochemical impedance spectroscopy (EIS) and Brunauer-Emmett-Teller (BET) method, showing successful addition of Ag-particles with the MnFeO3 structure. Then, the as-synthesized materials were investigated as: (i) photocatalysts for degradation tetracycline (TC) antibiotic and (ii) antibacterial agents for bacteria. The Ag-MnFeO3 catalyst demonstrated superior catalytic performance (95.7%), which was 1.6 times higher than that of pristine MnFeO3 (59.7%). The positive effect was ascribed to oxygen vacancies, enhanced light absorption ability, and lower recombination rate. The Ag-MnFeO3 catalyst also showed satisfactory removal performances in real water matrices. Furthermore, radical trapping tests depicted that the superoxide radicals played a dominant role in the photodegradation system. In addition, Box-Behnken design (BBD) was performed to determine the optimum conditions, which were determined as catalyst dosage of 0.45 g/L, initial TC concentration of 5.10 mg/L, and initial solution pH value of 3.69. In terms of antibacterial tests, the incorporation of Ag into the MnFeO3 structure greatly increased the antimicrobial resistance against bacteria. Our findings disclose that the incorporation of Ag into the MnFeO3 structure can be regarded as a feasible and promising approach to improve both photocatalytic degradation and antibacterial performances.


Subject(s)
Anti-Bacterial Agents , Ferric Compounds , Light , Silver , Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/pharmacology , Catalysis , Silver/chemistry , Ferric Compounds/chemistry , Tetracycline/chemistry , Tetracycline/pharmacology , X-Ray Diffraction
3.
Nutr Neurosci ; : 1-13, 2024 Apr 24.
Article in English | MEDLINE | ID: mdl-38657030

ABSTRACT

OBJECTIVES: This study aimed to compare the efficacy of royal jelly (RJ) and its major fatty acid 10-hydroxy-2-decenoic acid (10-HDA) on ischemic stroke-related pathologies using histological and molecular approaches. METHODS: Male rats were subjected to middle cerebral artery occlusion (MCAo) to induce ischemic stroke and were supplemented daily with either vehicle (control group), RJ or 10-HDA for 7 days starting on the day of surgery. On the eighth day, rats were sacrificed and brain tissue and blood samples were obtained to analyze brain infarct volume, DNA damage as well as apoptotic, inflammatory and epigenetic parameters. RESULTS: Both RJ and 10-HDA supplementation significantly reduced brain infarction and decreased weight loss when compared to control animals. These effects were associated with reduced levels of active caspase-3 and PARP-1 and increased levels of acetyl-histone H3 and H4. Although both RJ and 10-HDA treatments significantly increased acetyl-histone H3 levels, the effect of RJ was more potent than that of 10-HDA. RJ and 10-HDA supplementation also alleviated DNA damage by significantly reducing tail length, tail intensity and tail moment in brain tissue and peripheral lymphocytes, except for the RJ treatment which tended to reduce tail moment in lymphocytes without statistical significance. CONCLUSIONS: Our findings suggest that neuroprotective effects of RJ in experimental stroke can mostly be attributed to 10-HDA.

4.
J Sci Food Agric ; 102(12): 5502-5511, 2022 Sep.
Article in English | MEDLINE | ID: mdl-35355271

ABSTRACT

BACKGROUND: Royal jelly (RJ) is a unique beehive product and has been recommended for human health since ancient times because of its antioxidant, antimicrobial, antiproliferative, neuroprotective, anti-lipidemic and anti-aging features. However, the biggest obstacle in the use of RJ is the need for cold storage and the instability of bioactive components over time. In the present study, 10-hydroxy-2-decenoic acid (10-HDA) content, as well as antioxidant [using 1,1-diphenyl-2-picrylhydrazy and 2,2'-azino-bis(3-ethylbenzthiazoline-6-sulfonic acid) methods] and antimicrobial activity (five Gram-positive, five Gram-negative and three yeasts), were comparatively evaluated for three RJ forms, two of which can be stored at 24 ± 1 °C during storage. RESULTS: Microencapsulated royal jelly (MRJ) stored at room temperature succeeded in preserving its 10-HDA content, a major bioactive compound, during the 6 months, with respect to lyophilized royal jelly (LRJ) and fresh RJ stored at 4 °C. The initial 10-HDA contents of RJ, LRJ and MRJ were determined as 1.90%, 5.26% and 2.75%, respectively. Moreover, the total phenolic content, antioxidant capacity and antimicrobial activity mostly remained constant throughout the storage period (P ≥ 0.05). Gram-positive strains were generally more sensitive than Gram-negative strains. In the present study, the in vitro simulated digestion analysis showed that MRJ can tolerate the digestion process. CONCLUSION: Overall, the encapsulation process was considered as one preservative technique for RJ. The microencapsulation of RJ as shown in the results of the present study are encouraging in terms of enabling the local beekeeping sector to achieve ease of production and increased product diversity. MRJ shows promise as a commercial product with a high export value for producers. © 2022 Society of Chemical Industry.


Subject(s)
Anti-Infective Agents , Antioxidants , Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/pharmacology , Antioxidants/pharmacology , Fatty Acids/chemistry , Humans
5.
New Phytol ; 229(4): 2120-2134, 2021 02.
Article in English | MEDLINE | ID: mdl-33124043

ABSTRACT

Phytochemicals are used often in vitro and in vivo in cancer research. The plant hormones jasmonates (JAs) control the synthesis of specialized metabolites through complex regulatory networks. JAs possess selective cytotoxicity in mixed populations of cancer and normal cells. Here, direct incubation of leaf explants from the non-medicinal plant Arabidopsis thaliana with human breast cancer cells, selectively suppresses cancer cell growth. High-throughput LC-MS identified Arabidopsis metabolites. Protein and transcript levels of cell cycle regulators were examined in breast cancer cells. A synergistic effect by methyljasmonate (MeJA) and by compounds upregulated in the metabolome of MeJA-treated Arabidopsis leaves, on the breast cancer cell cycle, is associated with Cell Division Cycle 6 (CDC6), Cyclin-dependent kinase 2 (CDK2), Cyclins D1 and D3, indicating that key cell cycle components mediate cell viability reduction. Bioactives such as indoles, quinolines and cis-(+)-12-oxophytodienoic acid, in synergy, could act as anticancer compounds. Our work suggests a universal role for MeJA-treatment of Arabidopsis in altering the DNA replication regulator CDC6, supporting conservation, across kingdoms, of cell cycle regulation, through the crosstalk between the mechanistic target of rapamycin, mTOR and JAs. This study has important implications for the identification of metabolites with anti-cancer bioactivities in plants with no known medicinal pedigree and it will have applications in developing disease treatments.


Subject(s)
Arabidopsis Proteins , Arabidopsis , Neoplasms , Cell Cycle Proteins , Cell Line, Tumor , Cyclopentanes/pharmacology , Humans , Oxylipins/pharmacology , Plant Growth Regulators/pharmacology , TOR Serine-Threonine Kinases
SELECTION OF CITATIONS
SEARCH DETAIL
...