Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Sensors (Basel) ; 22(22)2022 Nov 11.
Article in English | MEDLINE | ID: mdl-36433320

ABSTRACT

We present a study on the radiation tolerance and timing properties of 3D diamond detectors fabricated by laser engineering on synthetic Chemical Vapor Deposited (CVD) plates. We evaluated the radiation hardness of the sensors using Charge Collection Efficiency (CCE) measurements after neutron fluences up to 1016 n/cm2 (1 MeV equivalent.) The radiation tolerance is significantly higher when moving from standard planar architecture to 3D architecture and increases with the increasing density of the columnar electrodes. Also, the maximum applicable bias voltage before electric breakdown increases significantly after high fluence irradiation, possibly due to the passivation of defects. The experimental analysis allowed us to predict the performance of the devices at higher fluence levels, well in the range of 1016 n/cm2. We summarize the recent results on the time resolution measurements of our test sensors after optimization of the laser fabrication process and outline future activity in developing pixel tracking systems for high luminosity particle physics experiments.

2.
Sensors (Basel) ; 20(22)2020 Nov 20.
Article in English | MEDLINE | ID: mdl-33233598

ABSTRACT

We measured the radiation tolerance of commercially available diamonds grown by the Chemical Vapor Deposition process by measuring the charge created by a 120 GeV hadron beam in a 50 µm pitch strip detector fabricated on each diamond sample before and after irradiation. We irradiated one group of samples with 70 MeV protons, a second group of samples with fast reactor neutrons (defined as energy greater than 0.1 MeV), and a third group of samples with 200 MeV pions, in steps, to (8.8±0.9) × 1015 protons/cm2, (1.43±0.14) × 1016 neutrons/cm2, and (6.5±1.4) × 1014 pions/cm2, respectively. By observing the charge induced due to the separation of electron-hole pairs created by the passage of the hadron beam through each sample, on an event-by-event basis, as a function of irradiation fluence, we conclude all datasets can be described by a first-order damage equation and independently calculate the damage constant for 70 MeV protons, fast reactor neutrons, and 200 MeV pions. We find the damage constant for diamond irradiated with 70 MeV protons to be 1.62±0.07(stat)±0.16(syst)× 10-18 cm2/(p µm), the damage constant for diamond irradiated with fast reactor neutrons to be 2.65±0.13(stat)±0.18(syst)× 10-18 cm2/(n µm), and the damage constant for diamond irradiated with 200 MeV pions to be 2.0±0.2(stat)±0.5(syst)× 10-18 cm2/(π µm). The damage constants from this measurement were analyzed together with our previously published 24 GeV proton irradiation and 800 MeV proton irradiation damage constant data to derive the first comprehensive set of relative damage constants for Chemical Vapor Deposition diamond. We find 70 MeV protons are 2.60 ± 0.29 times more damaging than 24 GeV protons, fast reactor neutrons are 4.3 ± 0.4 times more damaging than 24 GeV protons, and 200 MeV pions are 3.2 ± 0.8 more damaging than 24 GeV protons. We also observe the measured data can be described by a universal damage curve for all proton, neutron, and pion irradiations we performed of Chemical Vapor Deposition diamond. Finally, we confirm the spatial uniformity of the collected charge increases with fluence for polycrystalline Chemical Vapor Deposition diamond, and this effect can also be described by a universal curve.

3.
Nucl Instrum Methods Phys Res A ; 788: 86-94, 2015 Jul 11.
Article in English | MEDLINE | ID: mdl-33173251

ABSTRACT

Conventional PET systems can be augmented with additional detectors placed in close proximity of the region of interest. We developed a high resolution PET insert module to evaluate the added benefit of such a combination. The insert module consists of two back-to-back 1 mm thick silicon sensors, each segmented into 1040 1 mm2 pads arranged in a 40 by 26 array. A set of 16 VATAGP7.1 ASICs and a custom assembled data acquisition board were used to read out the signal from the insert module. Data were acquired in slice (2D) geometry with a Jaszczak phantom (rod diameters of 1.2-4.8 mm) filled with 18F-FDG and the images were reconstructed with ML-EM method. Both data with full and limited angular coverage from the insert module were considered and three types of coincidence events were combined. The ratio of high-resolution data that substantially improves quality of the reconstructed image for the region near the surface of the insert module was estimated to be about 4%. Results from our previous studies suggest that such ratio could be achieved at a moderate technological expense by using an equivalent of two insert modules (an effective sensor thickness of 4 mm).

SELECTION OF CITATIONS
SEARCH DETAIL
...