Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Total Environ ; 915: 170102, 2024 Mar 10.
Article in English | MEDLINE | ID: mdl-38228239

ABSTRACT

The objective of this study is to develop a mechanistic model to predict the long-term dynamic performance of High-Rate Activated Sludge (HRAS) process, including the removal of carbon (COD), nitrogen (N), and phosphorus (P). The model was formulated with inspiration from Activated Sludge Models No. 1 and 3 (ASM1 and ASM3) to incorporate essential mechanisms, such as adsorption and storage substrate, specific to HRAS systems. A stepwise protocol was followed for calibration with dynamic data from a pilot-scale HRAS plant. Sensitivity analysis identified influential model parameters, including maximum specific growth rate (µ), growth yield (YH), storage yield (YSTO), storage rate (kSTO), decay rate (b), and half saturation of the readily biodegradable substrate for growth (KS1). The calibrated model achieved prediction efficiencies above the normalized Mean Absolute Error (MAE) of 70 % for mixed liquor suspended solids (MLSS), total chemical oxygen demand (TCOD), soluble COD (SCOD), particulate COD (XCOD), total nitrogen (TN), ammonia nitrogen (SNH), total phosphorus (TP), soluble TP (STP), and particulate TP (XTP). Uncertainty analysis revealed that SCOD was underestimated. Based on the dynamic profiles of uncertainty bands and observed data, there is potential for improving the estimation of dynamic behavior in STP. The observed discrepancies may be attributed to variations in wastewater characteristics during the monitoring period, particularly concerning the phosphorus (P) fractions of the readily biodegradable substrate (SS) and soluble inerts (SI), which were not considered as dynamically changing parameters in the model.

2.
J Environ Manage ; 325(Pt A): 116549, 2023 Jan 01.
Article in English | MEDLINE | ID: mdl-36419284

ABSTRACT

Achieving a neutral/positive energy balance without compromising discharge standards is one of the main goals of wastewater treatment plants (WWTPs) in terms of sustainability. Aerobic granular sludge (AGS) technology promises high treatment performance with low energy and footprint requirement. In this study, high-rate activated sludge (HRAS) process was coupled to AGS process as an energy-efficient pre-treatment option in order to increase energy recovery from municipal wastewater and decrease the particulate matter load of AGS process. Three different feeding strategies were applied throughout the study. AGS system was fed with raw municipal wastewater, with the effluent of HRAS process, and with the mixture of the effluent of HRAS process and raw municipal wastewater at Stage 1, Stage 2 and Stage 3, respectively. Total suspended solids (TSS), chemical oxygen demand (COD), ammonia nitrogen (NH4+-N), and total phosphorus (TP) concentrations in the effluent were less than 10 mg/L, 60 mg/L, 0.4 mg/L, and 1.3 mg/L respectively at all stages. Fluctuations were observed in the denitrification performance due to changes in the influent COD/total nitrogen (TN) ratio. This study showed that coupling HRAS process with AGS process by feeding the AGS process with the mixture of HRAS process effluent and raw municipal wastewater could be an appropriate option for both increasing the energy recovery potential of WWTPs and enabling high effluent quality.


Subject(s)
Sewage , Water Purification , Wastewater , Bioreactors , Nitrogen
3.
Bioresour Technol ; 351: 126965, 2022 May.
Article in English | MEDLINE | ID: mdl-35278622

ABSTRACT

Energy-rich sludge can be obtained from primary clarifiers preceding biological reactors. Alternatively, the incoming wastewater can be sent to a very-high-loaded activated sludge system, i.e., a so-called A-stage. However, the effects of applying an A-stage instead of a primary clarifier, on the subsequent sludge digestion for long-term operation is still unknown. In this study, biogas production and permeate quality, and filterability characteristics were investigated in a lab-scale anaerobic membrane bioreactor for primary sludge and A-stage sludge (A-sludge) treatment. A higher specific methane yield was obtained from digestion of A-sludge compared to primary sludge. Similarly, specific methanogenic activity was higher when the anaerobic membrane bioreactor was fed with A-sludge compared to primary sludge. Plant-wide mass balance analysis indicated that about 35% of the organic matter in wastewater was recovered as methane by including an A-stage, compared to about 20% with a primary clarifier.


Subject(s)
Sewage , Water Purification , Anaerobiosis , Bioreactors , Methane , Waste Disposal, Fluid , Wastewater
SELECTION OF CITATIONS
SEARCH DETAIL
...