Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
ACS Chem Biol ; 14(9): 1990-1997, 2019 09 20.
Article in English | MEDLINE | ID: mdl-31407891

ABSTRACT

Here, we report the design, synthesis, and evaluation of a series of inhibitors of Staphylococcus aureus BPL (SaBPL), where the central acyl phosphate of the natural intermediate biotinyl-5'-AMP (1) is replaced by a sulfonamide isostere. Acylsulfamide (6) and amino sulfonylurea (7) showed potent in vitro inhibitory activity (Ki = 0.007 ± 0.003 and 0.065 ± 0.03 µM, respectively) and antibacterial activity against S. aureus ATCC49775 with minimum inhibitory concentrations of 0.25 and 4 µg/mL, respectively. Additionally, the bimolecular interactions between the BPL and inhibitors 6 and 7 were defined by X-ray crystallography and molecular dynamics simulations. The high acidity of the sulfonamide linkers of 6 and 7 likely contributes to the enhanced in vitro inhibitory activities by promoting interaction with SaBPL Lys187. Analogues with alkylsulfamide (8), ß-ketosulfonamide (9), and ß-hydroxysulfonamide (10) isosteres were devoid of significant activity. Binding free energy estimation using computational methods suggests deprotonated 6 and 7 to be the best binders, which is consistent with enzyme assay results. Compound 6 was unstable in whole blood, leading to poor pharmacokinetics. Importantly, 7 has a vastly improved pharmacokinetic profile compared to that of 6 presumably due to the enhanced metabolic stability of the sulfonamide linker moiety.


Subject(s)
Anti-Bacterial Agents/pharmacology , Bacterial Proteins/antagonists & inhibitors , Carbon-Nitrogen Ligases/antagonists & inhibitors , Enzyme Inhibitors/pharmacology , Sulfonamides/pharmacology , Animals , Anti-Bacterial Agents/chemical synthesis , Anti-Bacterial Agents/pharmacokinetics , Bacterial Proteins/chemistry , Carbon-Nitrogen Ligases/chemistry , Crystallography, X-Ray , Drug Design , Drug Stability , Enzyme Inhibitors/chemical synthesis , Enzyme Inhibitors/pharmacokinetics , Mice , Microbial Sensitivity Tests , Molecular Dynamics Simulation , Rats , Staphylococcus aureus/drug effects , Staphylococcus aureus/enzymology , Sulfonamides/chemical synthesis , Sulfonamides/pharmacokinetics
2.
ACS Infect Dis ; 4(2): 175-184, 2018 02 09.
Article in English | MEDLINE | ID: mdl-29131575

ABSTRACT

We report the synthesis and evaluation of 5-halogenated-1,2,3-triazoles as inhibitors of biotin protein ligase from Staphylococcus aureus. The halogenated compounds exhibit significantly improved antibacterial activity over their nonhalogenated counterparts. Importantly, the 5-fluoro-1,2,3-triazole compound 4c displays antibacterial activity against S. aureus ATCC49775 with a minimum inhibitory concentration (MIC) of 8 µg/mL.


Subject(s)
Anti-Bacterial Agents/pharmacology , Enzyme Inhibitors/pharmacology , Ligases/antagonists & inhibitors , Staphylococcus aureus/drug effects , Staphylococcus aureus/enzymology , Anti-Bacterial Agents/chemistry , Binding Sites , Biotin/metabolism , Dose-Response Relationship, Drug , Enzyme Inhibitors/chemistry , Halogenation , Humans , Microbial Sensitivity Tests , Models, Molecular , Molecular Conformation , Molecular Structure , Protein Binding
SELECTION OF CITATIONS
SEARCH DETAIL
...