Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 13 de 13
Filter
Add more filters










Publication year range
1.
Nano Lett ; 22(3): 1183-1189, 2022 02 09.
Article in English | MEDLINE | ID: mdl-35050634

ABSTRACT

Methyl-substituted germanane is an emerging material that has been proposed for novel applications in optoelectronics, photoelectrocatalysis, and biosensors. It is a two-dimensional semiconductor with a strong above-gap fluorescence associated with water intercalation. Here, we use time-resolved photoluminescence spectroscopy to understand the mechanism causing this fluorescence. We show that it originates from two distinct exciton populations. Both populations recombine exponentially, accompanied by the thermally activated transfer of exciton population from the shorter- to the longer-lived type. The two exciton populations involve different electronic levels and couple to different phonons. The longer-lived type of exciton migrates within the disordered energy landscape of localized recombination centers. These outcomes shed light on the fundamental optical and electronic properties of functionalized germanane, enabling the groundwork for future applications in optoelectronics, light harvesting, and sensing.


Subject(s)
Semiconductors , Spectrum Analysis/methods
2.
Faraday Discuss ; 227: 171-183, 2021 Apr 01.
Article in English | MEDLINE | ID: mdl-33295345

ABSTRACT

In the realm of two-dimensional material frameworks, single-element graphene-like lattices, known as Xenes, pose several issues concerning their environmental stability, with implications for their use in technology transfer to a device layout. In this Discussion, we scrutinize the chemical reactivity of epitaxial silicene, taken as a case in point, in oxygen-rich environments. The oxidation of silicene is detailed by means of a photoemission spectroscopy study upon carefully dosing molecular oxygen under vacuum and subsequent exposure to ambient conditions, showing different chemical reactivity. We therefore propose a sequential Al2O3 encapsulation of silicene as a solution to face degradation, proving its effectiveness by virtue of the interaction between silicene and a silver substrate. Based on this method, we generalize our encapsulation scheme to a large number of metal-supported Xenes by taking into account the case of epitaxial phosphorene-on-gold.

3.
Materials (Basel) ; 13(24)2020 Dec 16.
Article in English | MEDLINE | ID: mdl-33339218

ABSTRACT

In this work, studies of the optical constants of monolayer transition metal dichalcogenides and few-layer black phosphorus are briefly reviewed, with particular emphasis on the complex dielectric function and refractive index. Specifically, an estimate of the complex index of refraction of phosphorene and few-layer black phosphorus is given. The complex index of refraction of this material was extracted from differential reflectance data reported in the literature by employing a constrained Kramers-Kronig analysis combined with the transfer matrix method. The reflectance contrast of 1-3 layers of black phosphorus on a silicon dioxide/silicon substrate was then calculated using the extracted complex indices of refraction.

4.
J Chem Phys ; 152(21): 214705, 2020 Jun 07.
Article in English | MEDLINE | ID: mdl-32505161

ABSTRACT

We studied the charge carrier dynamics in 2D perovskite NBT2PbI4 by ultrafast optical pump-THz probe spectroscopy. We observed a few ps long relaxation dynamics that can be ascribed to the band to band carrier recombination, in the absence of any contribution from many-body and trap assisted processes. The transient conductivity spectra show that the polaron dynamics is strongly modulated by the presence of a rich exciton population. The polarization field resulting from the exciton formation acts as the source of a restoring force that localizes polarons. This is revealed by the presence of a negative imaginary conductivity. Our results show that the dynamics of excitons in 2D perovskites at room temperature can be detected by monitoring their effect on the conductivity of the photoinduced polaronic carrier.

5.
Phys Rev Lett ; 122(16): 166601, 2019 Apr 26.
Article in English | MEDLINE | ID: mdl-31075027

ABSTRACT

We study the nature of photoexcited charge carriers in CsPbBr_{3} nanocrystal thin films by ultrafast optical pump-THz probe spectroscopy. We observe a deviation from a pure Drude dispersion of the THz dielectric response that is ascribed to the polaronic nature of carriers; a transient blueshift of observed phonon frequencies is indicative of the coupling between photogenerated charges and stretching-bending modes of the deformed inorganic sublattice, as confirmed by DFT calculations.

6.
ACS Nano ; 11(3): 3376-3382, 2017 03 28.
Article in English | MEDLINE | ID: mdl-28264160

ABSTRACT

The structural and electronic properties of nanoscale Si epitaxially grown on Ag(111) can be tuned from a multilayer silicene phase, where the constitutive layers incorporate a mixed sp2/sp3 bonding, to other ordinary Si phases, such as amorphous and diamond-like Si. Based on comparative scanning tunneling microscopy and Raman spectroscopy investigations, a key role in determining the nanoscale Si phase is played by the growth temperature of the epitaxial deposition on Ag(111) substrate and the presence or absence of a single-layer silicene as a seed for the successive growth. Furthermore, when integrated into a field-effect transistor device, multilayer silicene exhibits a characteristic ambipolar charge carrier transport behavior that makes it strikingly different from other conventional Si channels and suggestive of a Dirac-like character of the electronic bands of the crystal. These findings spotlight the interest in multilayer silicene as a different nanoscale Si phase for advanced nanotechnology applications such as ultrascaled nanoelectronics and nanomembranes, as well as for fundamental exploration of quantum properties.

7.
Adv Mater ; 29(19)2017 May.
Article in English | MEDLINE | ID: mdl-28294440

ABSTRACT

Manipulating the anisotropy in 2D nanosheets is a promising way to tune or trigger functional properties at the nanoscale. Here, a novel approach is presented to introduce a one-directional anisotropy in MoS2 nanosheets via chemical vapor deposition (CVD) onto rippled patterns prepared on ion-sputtered SiO2 /Si substrates. The optoelectronic properties of MoS2 are dramatically affected by the rippled MoS2 morphology both at the macro- and the nanoscale. In particular, strongly anisotropic phonon modes are observed depending on the polarization orientation with respect to the ripple axis. Moreover, the rippled morphology induces localization of strain and charge doping at the nanoscale, thus causing substantial redshifts of the phonon mode frequencies and a topography-dependent modulation of the MoS2 workfunction, respectively. This study paves the way to a controllable tuning of the anisotropy via substrate pattern engineering in CVD-grown 2D nanosheets.

8.
Nanotechnology ; 27(17): 175703, 2016 Apr 29.
Article in English | MEDLINE | ID: mdl-26984949

ABSTRACT

Large-scale integration of MoS2 in electronic devices requires the development of reliable and cost-effective deposition processes, leading to uniform MoS2 layers on a wafer scale. Here we report on the detailed study of the heterogeneous vapor-solid reaction between a pre-deposited molybdenum solid film and sulfur vapor, thus resulting in a controlled growth of MoS2 films onto SiO2/Si substrates with a tunable thickness and cm(2)-scale uniformity. Based on Raman spectroscopy and photoluminescence, we show that the degree of crystallinity in the MoS2 layers is dictated by the deposition temperature and thickness. In particular, the MoS2 structural disorder observed at low temperature (<750 °C) and low thickness (two layers) evolves to a more ordered crystalline structure at high temperature (1000 °C) and high thickness (four layers). From an atomic force microscopy investigation prior to and after sulfurization, this parametrical dependence is associated with the inherent granularity of the MoS2 nanosheet that is inherited by the pristine morphology of the pre-deposited Mo film. This work paves the way to a closer control of the synthesis of wafer-scale and atomically thin MoS2, potentially extendable to other transition metal dichalcogenides and hence targeting massive and high-volume production for electronic device manufacturing.

9.
Nat Nanotechnol ; 10(3): 227-31, 2015 Mar.
Article in English | MEDLINE | ID: mdl-25643256

ABSTRACT

Free-standing silicene, a silicon analogue of graphene, has a buckled honeycomb lattice and, because of its Dirac bandstructure combined with its sensitive surface, offers the potential for a widely tunable two-dimensional monolayer, where external fields and interface interactions can be exploited to influence fundamental properties such as bandgap and band character for future nanoelectronic devices. The quantum spin Hall effect, chiral superconductivity, giant magnetoresistance and various exotic field-dependent states have been predicted in monolayer silicene. Despite recent progress regarding the epitaxial synthesis of silicene and investigation of its electronic properties, to date there has been no report of experimental silicene devices because of its air stability issue. Here, we report a silicene field-effect transistor, corroborating theoretical expectations regarding its ambipolar Dirac charge transport, with a measured room-temperature mobility of ∼100 cm(2) V(-1) s(-1) attributed to acoustic phonon-limited transport and grain boundary scattering. These results are enabled by a growth-transfer-fabrication process that we have devised--silicene encapsulated delamination with native electrodes. This approach addresses a major challenge for material preservation of silicene during transfer and device fabrication and is applicable to other air-sensitive two-dimensional materials such as germanene and phosphorene. Silicene's allotropic affinity with bulk silicon and its low-temperature synthesis compared with graphene or alternative two-dimensional semiconductors suggest a more direct integration with ubiquitous semiconductor technology.

10.
Adv Mater ; 26(13): 2096-101, 2014 Apr 02.
Article in English | MEDLINE | ID: mdl-24347540

ABSTRACT

The structural and electronic properties of a Si nanosheet (NS) grown onto a MoS2 substrate by means of molecular beam epitaxy are assessed. Epitaxially grown Si is shown to adapt to the trigonal prismatic surface lattice of MoS2 by forming two-dimensional nanodomains. The Si layer structure is distinguished from the underlying MoS2 surface structure. The local electronic properties of the Si nanosheet are dictated by the atomistic arrangement of the layer and unlike the MoS2 hosting substrate they are qualified by a gap-less density of states.

11.
J Chem Phys ; 135(19): 194501, 2011 Nov 21.
Article in English | MEDLINE | ID: mdl-22112086

ABSTRACT

We perform a systematic investigation of the resonance and vibrational properties of naphthyl-terminated sp carbon chains (dinaphthylpolyynes) by combined multi-wavelength resonant Raman (MWRR) spectroscopy, ultraviolet-visible spectroscopy, and Fourier-transform infrared (FT-IR) spectroscopy, plus ab initio density functional theory (DFT) calculations. We show that the MWWR and FT-IR spectroscopies are particularly suited to identify chains of different lengths and different terminations, respectively. By DFT calculations, we further extend those findings to sp carbon chains end-capped by other organic structures. The present analysis shows that combined MWRR and FT-IR provide a powerful tool to draw a complete picture of chemically stabilized sp carbon chains.


Subject(s)
Carbon/chemistry , Naphthalenes/chemistry , Polyynes/chemistry , Quantum Theory , Vibration
12.
J Phys Chem B ; 114(46): 14834-41, 2010 Nov 25.
Article in English | MEDLINE | ID: mdl-20973472

ABSTRACT

We report a combined study on the synthesis, spectroscopic characterization, and theoretical modeling of a series of α,ω-dinaphthylpolyynes. We synthesized this family of naphthyl-terminated sp carbon chains by reacting diiodoacetylene and 1-ethynylnaphthalene under the Cadiot-Chodkiewicz reaction conditions. By means of liquid chromatography (HPLC), we separated the products and recorded their electronic absorption spectra, which enabled us to identify the complete series of dinaphthylpolyynes Ar-C(2n)-Ar (with Ar = naphthyl group and n = number of acetilenic units) with n ranging from 2 to 6. The longest wavelength transition (LWT) in the electronic spectra of the dinaphthylpolyynes red shifts linearly with n away from the LWT of the bare termination. This result is also supported by DFT-LDA simulations. Finally, we probed the stability of the dinaphthylpolyynes in a solid-state precipitate by Fourier-transform infrared spectroscopy and by differential scanning calorimetry (DSC).

13.
Phys Rev Lett ; 102(24): 245502, 2009 Jun 19.
Article in English | MEDLINE | ID: mdl-19659025

ABSTRACT

Ab initio calculations within density-functional theory combined with experimental Raman spectra on cluster-beam deposited pure-carbon films provide a consistent picture of sp-carbon chains stabilized by sp;{3} or sp;{2} terminations, the latter being sensitive to torsional strain. This unexplored effect promises many exciting applications since it allows one to modify the conductive states near the Fermi level and to switch on and off the on-chain pi-electron magnetism.


Subject(s)
Carbon/chemistry , Nanowires/chemistry , Models, Chemical , Models, Molecular , Spectrum Analysis, Raman
SELECTION OF CITATIONS
SEARCH DETAIL
...