Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Front Psychiatry ; 9: 43, 2018.
Article in English | MEDLINE | ID: mdl-29520239

ABSTRACT

Alterations in dopamine neurotransmission are generally associated with diseases such as attention-deficit/hyperactivity disorder (ADHD) and obsessive-compulsive disorder (OCD). Such diseases typically feature poor decision making and lack of control on executive functions and have been studied through the years using many animal models. Dopamine transporter (DAT) knockout (KO) and heterozygous (HET) mice, in particular, have been widely used to study ADHD. Recently, a strain of DAT KO rats has been developed (1). Here, we provide a phenotypic characterization of reward sensitivity and compulsive choice by adult rats born from DAT-HET dams bred with DAT-HET males, in order to further validate DAT KO rats as an animal model for preclinical research. We first tested DAT KO rats' sensitivity to rewarding stimuli, provided by highly appetitive food or sweet water; then, we tested their choice behavior with an Intolerance-to-Delay Task (IDT). During these tests, DAT KO rats appeared less sensitive to rewarding stimuli than wild-type (WT) and HET rats: they also showed a prominent hyperactive behavior with a rigid choice pattern and a wide number of compulsive stereotypies. Moreover, during the IDT, we tested the effects of amphetamine (AMPH) and RO-5203648, a trace amine-associated receptor 1 (TAAR1) partial agonist. AMPH accentuated impulsive behaviors in WT and HET rats, while it had no effect in DAT KO rats. Finally, we measured the levels of tyrosine hydroxylase, dopamine receptor 2 (D2), serotonin transporter, and TAAR1 mRNA transcripts in samples of ventral striatum, finding no significant differences between WT and KO genotypes. Throughout this study, DAT KO rats showed alterations in decision-making processes and in motivational states, as well as prominent motor and oral stereotypies: more studies are warranted to fully characterize and efficiently use them in preclinical research.

2.
CNS Neurosci Ther ; 24(8): 712-720, 2018 08.
Article in English | MEDLINE | ID: mdl-29392842

ABSTRACT

AIMS: The serotonin 7 receptor (5-HT7R) subtype, coded by Htr7 gene, is broadly expressed in the central nervous system (CNS) with clear involvement in behavioral functions such as learning/memory, regulation of mood, and circadian rhythms. In this study, we assessed effects of 5-HT7R stimulation by administration of its selective agonist, LP-211 (0.25 mg/kg i.p.), in adult Wistar-Han rats. METHODS: We used two different explorative-curiosity tests. Drug was administered either before one side-chamber familiarization (CF/V group) or immediately after it, to act on consolidation of familiarization (V/CF group). RESULTS: Exp. 1 for novelty seeking in black/white boxes (BWB), with door opening after 5 minutes in the familiar chamber, showed that (i) time spent in the novel environment (significantly higher than in familiar chamber for controls) is enhanced in V/CF group (potentiated recognition for a "visual" consolidation) and not different in CF/V group; (ii) activity and chamber transitions, made by CF/V rats, are significantly higher than for other groups (interference on recognition for a "spatial" acquisition). Exp. 2 for novelty preference in D- vs L-shaped chambers (D/L), with start from neutral center, gave different results: (i) time spent in the novel environment by CF/V group is significantly higher than other groups (potentiated "cognitive" acquisition); (ii) chamber transitions made by V/CF group are significantly higher than other groups (potentiated "emotional" consolidation). CONCLUSION: These apparently conflicting results may reflect LP-211 effects on visual vs spatial memory (D/L apparatus has more pronounced hippocampal components than BWB). However, further experiments are needed to analyze more in depth the mechanisms involved.


Subject(s)
Exploratory Behavior/drug effects , Piperazines/pharmacology , Receptors, Serotonin/metabolism , Serotonin Receptor Agonists/pharmacology , Spatial Behavior/drug effects , Animals , Dark Adaptation/drug effects , Male , Motor Activity/drug effects , Photic Stimulation , Rats , Rats, Wistar , Statistics, Nonparametric , Time Factors
SELECTION OF CITATIONS
SEARCH DETAIL
...