Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Type of study
Language
Publication year range
1.
Curr Health Sci J ; 47(3): 412-419, 2021.
Article in English | MEDLINE | ID: mdl-35003774

ABSTRACT

The central nervous system tumors are the most common solid tumors in adults.. Unlike other types of cancers, brain cancer is much difficult to treat because of the blood-brain barrier (BBB) that prevents drug substances from crossing it and accessing the brain. Different types of methods to overcome BBB have been used in vivo and in vitro, of which the use of nanoparticle-mediated delivery of therapeutic drugs is particularly promising. In the present study, we used iron oxide magnetic nanoparticles (NPs) as carrier system for helianthin (He/NPs) to treat cancer cells derived from glioblastoma. An early passage cell cultures (GB1B), established in our laboratory from tissue obtained from a patient diagnosed with glioblastoma, was used. The cells were treated with different concentrations of NPs or HeNPs and then cell proliferation was measured at 24, 48 and 72 hours. Our results showed that the treatment with NPs was well tolerated by glioblastoma cells, the viability of the cells increased very slightly after the treatment. Furthermore, we demonstrated that helianthin loaded Fe3O4 magnetic nanoparticles induced cytotoxicity in human glioblastoma cells. The treatment with HeNPs induced dose and time dependent.

2.
Contemp Oncol (Pozn) ; 24(1): 55-66, 2020.
Article in English | MEDLINE | ID: mdl-32514239

ABSTRACT

From all central nervous system tumors, gliomas are the most common. Nowadays, researchers are looking for more efficient treatments for these tumors, as well as ways for early diagnosis. Receptor tyrosine kinases (RTKs) are major targets for oncology and the development of small-molecule RTK inhibitors has been proven successful in cancer treatment. Mutations or aberrant activation of the RTKs and their intracellular signaling pathways are linked to several malignant diseases, including glioblastoma. The progress in the understanding of malignant glioma evolution has led to RTK targeted therapies with high capacity to improve the therapeutic response while reducing toxicity. In this review, we present the most important RTKs (i.e. EGFR, IGFR, PDGFR and VEGFR) currently used for developing cancer therapeutics together with the potential of RTK-related drugs in glioblastoma treatment. Also, we focus on some therapeutic agents that are currently at different stages of research or even in clinical phases and proved to be suitable as re-purposing candidates for glioblastoma treatment.

SELECTION OF CITATIONS
SEARCH DETAIL
...