Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Int J Mol Sci ; 24(3)2023 Feb 03.
Article in English | MEDLINE | ID: mdl-36769362

ABSTRACT

Exercise-released extracellular vesicles (EVs) are emerging as a novel class of exerkines that promotes systemic beneficial effects. However, slight differences in the applied exercise protocols in terms of mode, intensity and duration, as well as the need for standardized protocols for EV isolation, make the comparison of the studies in the literature extremely difficult. This work aims to investigate the EV amount and EV-associated miRNAs released in circulation in response to different physical exercise regimens. Healthy individuals were subjected to different exercise protocols: acute aerobic exercise (AAE) and training (AT), acute maximal aerobic exercise (AMAE) and altitude aerobic training (AAT). We found a tendency for total EVs to increase in the sedentary condition compared to trained participants following AAE. Moreover, the cytofluorimetric analysis showed an increase in CD81+/SGCA+/CD45- EVs in response to AAE. Although a single bout of moderate/maximal exercise did not impact the total EV number, EV-miRNA levels were affected as a result. In detail, EV-associated miR-206, miR-133b and miR-146a were upregulated following AAE, and this trend appeared intensity-dependent. Finally, THP-1 macrophage treatment with exercise-derived EVs induced an increase of the mRNAs encoding for IL-1ß, IL-6 and CD163 using baseline and immediately post-exercise EVs. Still, 1 h post-exercise EVs failed to stimulate a pro-inflammatory program. In conclusion, the reported data provide a better understanding of the release of circulating EVs and their role as mediators of the inflammatory processes associated with exercise.


Subject(s)
Extracellular Vesicles , MicroRNAs , Humans , MicroRNAs/genetics , Macrophages , Exercise
2.
Methods Mol Biol ; 2292: 153-172, 2021.
Article in English | MEDLINE | ID: mdl-33651360

ABSTRACT

Extracellular vesicles (EVs) are small membrane-bound particles released into extracellular space by almost all cell types, and found in body fluids like blood, urine, and saliva. Mounting evidence has demonstrated the clinical potential of EVs as diagnostic and therapeutic tools to analyse physiological/pathological processes due to their ability to transport biomolecules secreted from diverse tissues of an individual.For example, the urinary EVs (uEVs), released from all regions of the kidney's nephron and from other cells that line the urinary tract, retain proteomic and transcriptomic markers specific to their cell of origin representing a valuable tool for kidney disease diagnosis.Despite the numerous efforts in developing suitable methods to separate EVs from biofluids, providing material of high purity and low variability poses a limit to clinical translation.This chapter focuses on advantages and disadvantages of several EV isolation methodologies, and provides examples of uEV isolation protocols based on time, cost, and equipment considerations, as well as the sample requirements for any downstream analyses.


Subject(s)
Extracellular Vesicles/chemistry , Urinalysis/methods , Animals , Biomarkers/analysis , Chromatography, Gel/methods , Humans , Immunoprecipitation/methods , Liquid Biopsy/methods , Ultracentrifugation/methods
3.
Int J Mol Sci ; 20(11)2019 Jun 08.
Article in English | MEDLINE | ID: mdl-31181747

ABSTRACT

Neuromuscular junction (NMJ) formation involves morphological changes both in motor terminals and muscle membrane. The molecular mechanisms leading to NMJ formation and maintenance have not yet been fully elucidated. During the last decade, it has become clear that virtually all cells release different types of extracellular vesicles (EVs), which can be taken up by nearby or distant cells modulating their activity. Initially, EVs were associated to a mechanism involved in the elimination of unwanted material; subsequent evidence demonstrated that exosomes, and more in general EVs, play a key role in intercellular communication by transferring proteins, lipids, DNA and RNA to target cells. Recently, EVs have emerged as potent carriers for Wnt, bone morphogenetic protein, miRNA secretion and extracellular traveling. Convincing evidence demonstrates that presynaptic terminals release exosomes that are taken up by muscle cells, and these exosomes can modulate synaptic plasticity in the recipient muscle cell in vivo. Furthermore, recent data highlighted that EVs could also be a potential cause of neurodegenerative disorders. Indeed, mutant SOD1, TDP-43 and FUS/TLS can be secreted by neural cells packaged into EVs and enter in neighboring neural cells, contributing to the onset and severity of the disease.


Subject(s)
Extracellular Vesicles/metabolism , Neuromuscular Junction/metabolism , Signal Transduction , Animals , Humans , MicroRNAs/genetics , MicroRNAs/metabolism , Motor Neuron Disease/etiology , Neurogenesis , Neuromuscular Junction/cytology , Neuromuscular Junction/pathology , Neuromuscular Junction/physiology
SELECTION OF CITATIONS
SEARCH DETAIL
...