Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Carbohydr Polym ; 134: 205-12, 2015 Dec 10.
Article in English | MEDLINE | ID: mdl-26428117

ABSTRACT

Final properties of two thermoplastic corn starch matrices were improved by adding poly(ɛ-caprolactone), PCL, at 2.5, 5, and 10% w/w. One of the thermoplastic starch matrices was processed using water and glycerol as plasticizers (SG) and the other one was plasticized with a mixture of glycerol and sodium alginate (SGA). Blends were suitably processed by melt mixing and further injected. Films obtained by thermo-compression were flexible and easy to handle. Microstructure studies (SEM and FTIR) revealed a nice distribution of PCL within both matrices and also a good starch-PCL compatibility, attributed to the lower polyester concentration. The crystalline character of PCL was the responsible of the increment in the degree of crystallinity of starch matrices, determined by XRD. Moreover, it was demonstrated by TGA that PCL incorporation did not affect the thermal stability of these starch-based materials. In addition, a shift of Tg values of both glycerol and starch-rich phases to lower values was determined by DSC and DMA tests, attributed to the PCL plasticizing action. Besides, PCL blocking effect to visible and UV radiations was evident by the incremented opacity and the UV-barrier capacity of the starch films. Finally, water vapor permeability and water solubility values were reduced by PCL incorporation.


Subject(s)
Polyesters/chemistry , Starch/chemistry , Starch/ultrastructure , Alginates/chemistry , Crystallization , Glucuronic Acid/chemistry , Glycerol/chemistry , Hexuronic Acids/chemistry , Permeability , Plasticizers/chemistry , Steam/analysis , Temperature , Transition Temperature , Water/chemistry , Zea mays/chemistry
2.
Carbohydr Polym ; 126: 83-90, 2015 Aug 01.
Article in English | MEDLINE | ID: mdl-25933526

ABSTRACT

Corn starch melt-processing in the presence of a commonly used plasticizer mixture (water/glycerol) and a non-conventional alternative (alginate/glycerol) was evaluated. All assayed formulations were successfully processed by melt-mixing and injected in circular probes. It was determined that all samples presented a typical viscoelastic behavior, observing a decrease in storage and loss modulus with water and alginate concentration, which facilitated samples processability. Concerning to thermal stability, it was not affected neither for water nor alginate presence. From injected probes, flexible films were obtained by thermo-compression. Films with the highest assayed water content presented a sticky appearance, whereas those containing alginate were non-tacky. Plasticizing action of water and alginate was evidenced by the occurrence of homogeneous fracture surfaces, without the presence of unmelted starch granules. Besides, the shift of glass transition temperature to lower values also corroborated the plasticizing effect of both additives. In conclusion, obtained results demonstrated the well-plasticizing action of sodium alginate on starch matrix, turning this additive into a promissory alternative to replace water during melt-processing of thermoplastic corn-starch.


Subject(s)
Alginates/chemistry , Glycerol/chemistry , Plasticizers/chemistry , Starch/chemistry , Zea mays/chemistry , Glucuronic Acid/chemistry , Hexuronic Acids/chemistry , Transition Temperature , Water/chemistry
3.
Macromol Rapid Commun ; 33(15): 1310-5, 2012 Aug 14.
Article in English | MEDLINE | ID: mdl-22628191

ABSTRACT

A straightforward, novel strategy based on the in situ functionalization of polymers prepared by nitroxide-mediated polymerization (NMP), for the use as an extension toward block copolymers and post-polymerization modifications, has been investigated. The nitroxide end group is exchanged for a thiocarbonylthio end group by a rapid transfer reaction with bis(thiobenzoyl) disulfide to generate in situ reversible addition-fragmentation chain transfer (RAFT) macroinitiators. Moreover, not only have these macroinitiators been used in chain extension and block copolymerization experiments by the RAFT process but also a thiol-terminated polymer is synthesized by aminolysis of the RAFT end group and subsequently reacted with dodecyl vinyl ether by thiol-ene chemistry.


Subject(s)
Nitrogen Oxides/chemistry , Polymers/chemical synthesis , Sulfhydryl Compounds/chemistry , Macromolecular Substances/chemical synthesis , Macromolecular Substances/chemistry , Molecular Structure , Polymerization , Polymers/chemistry
4.
Langmuir ; 26(18): 14494-501, 2010 Sep 21.
Article in English | MEDLINE | ID: mdl-20722372

ABSTRACT

The internal structure of polystyrene(PS)-shell micelles having core-forming blocks consisting of polydimethylsiloxane (PDMS) or poly[5-(N,N-diethylamino)isoprene] (PAI) was determined in detail by accessing the multilevel structural organization using static and dynamic light scattering and small-angle X-ray scattering techniques. Well-defined PS-b-PDMS and PS-b-PAI diblock copolymers with molar masses in the range of 12.0k-18.2k g/mol were dispersed in cyclohexane, dimethylacetamide, or dimethylformamide. Colloidal nanoparticles exhibiting either swollen core with a large surface area per corona chain that enables the PS chains to assume a random coil conformation with gaussian statistics, or compact core and slightly stretched PS chains in the corona were obtained. Therefore, the results of this study provide an interesting alternative allowing for precise control of the core and corona properties of PS-b-PDMS and PS-b-PAI micelles in selective solvents. Admittedly, such differences in terms of micellar properties can dictate the potential of block copolymer micelles for generating thin films from preformed nano-objects, as well as the capability to function as nanoreactors in organic medium.

SELECTION OF CITATIONS
SEARCH DETAIL
...