Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Int J Mol Sci ; 24(17)2023 Aug 26.
Article in English | MEDLINE | ID: mdl-37686082

ABSTRACT

Oxidative stress is linked to a series of diseases; therefore, the development of efficient antioxidants might be beneficial in preventing or ameliorating these conditions. Based on the structure of a previously reported compound with good antioxidant properties and on computational studies, we designed several catechol derivatives with enhanced antioxidant potential. The compounds were synthesized and physicochemically characterized, and their antioxidant activity was assessed through different antiradical, electron transfer and metal ions chelation assays, their electrochemical behavior and cytotoxicity were studied. The results obtained in the in vitro experiments correlated very well with the in silico studies; all final compounds presented very good antioxidant properties, generally superior to those of the reference compounds used. Similarly, the results obtained from studying the compounds' electrochemical behavior were in good agreement with the results of the antioxidant activity evaluation assays. Regarding the compounds' cytotoxicity, compound 7b had a dose-dependent inhibitory effect against all cell lines. In conclusion, through computer-aided design, we developed several catechol thiazolyl-hydrazones with excellent antioxidant properties, of which compound 7b, with two catechol moieties in its structure, exhibited the best antioxidant activity.


Subject(s)
Antioxidants , Computer-Aided Design , Antioxidants/pharmacology , Catechols/pharmacology , Hydrazones/pharmacology , Thiazoles
2.
Molecules ; 28(8)2023 Apr 07.
Article in English | MEDLINE | ID: mdl-37110539

ABSTRACT

The antimicrobial and antioxidant effects of plant extracts are well known, but their use is limited because they affect the physicochemical and sensory characteristics of products. Encapsulation presents an option to limit or prevent these changes. The paper presents the composition of individual polyphenols (HPLC-DAD-ESI-MS) from basil (Ocimum basilicum L.) extracts (BE), and their antioxidant activity and inhibitory effects against strains of Staphylococcus aureus, Geobacillus stearothermophilus, Bacillus cereus, Candida albicans, Enterococcus faecalis, Escherichia coli, and Salmonella Abony. The BE was encapsulated in sodium alginate (Alg) using the drop technique. The encapsulation efficiency of microencapsulated basil extract (MBE) was 78.59 ± 0.01%. SEM and FTIR analyses demonstrated the morphological aspect of the microcapsules and the existence of weak physical interactions between the components. Sensory, physicochemical and textural properties of MBE-fortified cream cheese were evaluated over a 28-day storage time at 4 °C. In the optimal concentration range of 0.6-0.9% (w/w) MBE, we determined the inhibition of the post-fermentation process and the improvement in the degree of water retention. This led to the improvement of the textural parameters of the cream cheese, contributing to the extension of the shelf life of the product by 7 days.


Subject(s)
Anti-Infective Agents , Cheese , Ocimum basilicum , Cheese/analysis , Anti-Infective Agents/pharmacology , Plant Extracts/pharmacology , Plant Extracts/chemistry , Ocimum basilicum/chemistry , Antioxidants/pharmacology , Antioxidants/chemistry
3.
Antioxidants (Basel) ; 12(4)2023 Apr 06.
Article in English | MEDLINE | ID: mdl-37107268

ABSTRACT

The article investigated the antioxidant and antimicrobial activity of extracts from two aromatic plants-Satureja hortensis L. (SE) and Rosmarinus officinalis L. (RE), encapsulated in alginate, on-yogurt properties. The encapsulation efficiency was controlled by FTIR and SEM analysis. In both extracts, the individual polyphenol content was determined by HPLC-DAD-ESI-MS. The total polyphenol content and the antioxidant activity were spectrophotometrically quantified. The antimicrobial properties of SE and RE against gram-positive bacteria (Bacillus cereus, Enterococcus faecalis, Staphylococcus aureus, Geobacillus stearothermophilus), gram-negative bacteria (Escherichia coli, Acinetobacter baumannii, Salmonella abony) and yeasts (Candida albicans) were analyzed in vitro. The encapsulated extracts were used to prepare the functional concentrated yogurt. It was established that the addition of 0.30-0.45% microencapsulated plant extracts caused the inhibition of the post-fermentation process, the improvement of the textural parameters of the yogurt during storage, thus the shelf life of the yogurt increased by seven days, compared to the yogurt simple. Mutual information analysis was applied to establish the correlation between the concentration of the encapsulated extracts on the sensory, physical-chemical, and textural characteristics of the yogurt.

4.
Antioxidants (Basel) ; 10(11)2021 Oct 27.
Article in English | MEDLINE | ID: mdl-34829578

ABSTRACT

Oxidative stress represents the underlying cause of many chronic diseases in human; therefore, the development of potent antioxidant compounds for preventing or treating such conditions is useful. Starting from the good antioxidant and antiradical properties identified for the previously reported Dihydroxy-Phenyl-Thiazol-Hydrazinium chloride (DPTH), we synthesized a congeneric series of phenolic thiazoles. The radical scavenging activity, and the antioxidant and chelation potential were assessed in vitro, a series of quantum descriptors were calculated, and the electrochemical behavior of the synthesized compounds was studied to evaluate the impact on the antioxidant and antiradical activities. In addition, their antibacterial and antifungal properties were evaluated against seven aerobic bacterial strains and a strain of C. albicans, and their cytotoxicity was assessed in vitro. Compounds 5a-b, 7a-b and 8a-b presented remarkable antioxidant and antiradical properties, and compounds 5a-b, 7a and 8a displayed good Cu+2 chelating activity. Compounds 7a and 8a were very active against P. aeruginosa ATCC 27853 compared to norfloxacin, and proved less cytotoxic than ascorbic acid against the human keratinocyte cell line (HaCaT cells, CLS-300493). Several phenolic compounds from the synthesized series presented excellent antioxidant activity and notable anti-Pseudomonas potential.

5.
Beilstein J Nanotechnol ; 11: 1092-1109, 2020.
Article in English | MEDLINE | ID: mdl-32802712

ABSTRACT

Superparamagnetic iron oxide nanoparticles (SPIONs) have unique properties with regard to biological and medical applications. SPIONs have been used in clinical settings although their safety of use remains unclear due to the great differences in their structure and in intra- and inter-patient absorption and response. This review addresses potential applications of SPIONs in vitro (formulations), ex vivo (in biological cells and tissues) and in vivo (preclinical animal models), as well as potential biomedical applications in the context of drug targeting, disease treatment and therapeutic efficacy, and safety studies.

6.
Ecotoxicology ; 28(6): 631-642, 2019 Aug.
Article in English | MEDLINE | ID: mdl-31161525

ABSTRACT

Understanding the effects of many essential non-steroidal anti-inflammatory drugs (NSAIDs) on plants is still limited, especially at environmentally realistic concentrations. This paper presents the influence of three of the most frequently used NSAIDs (diclofenac, ibuprofen, and naproxen) at environmentally realistic concentrations on the autochthonous green leafy vegetables: orache (Atriplex patula L.), spinach (Spinacia oleracea L.) and lettuce (Lactuca sativa L.). Our research was focused on the determination of the photosynthetic parameters, the emission rate of volatile organic compounds, and the evaluation of the ultrastructure of leaves of studied vegetables after exposure to abiotic stress induced by environmental pollutants, namely NSAIDs. The data obtained indicate a moderate reduction of foliage physiological activity as a response to the stress induced by NSAIDs to the selected green leafy vegetables. The increase of the 3-hexenal and monoterpene emission rates with increasing NSAIDs concentration could be used as a sensitive and a rapid indicator to assess the toxicity of the NSAIDs. Microscopic analysis showed that the green leafy vegetables were affected by the selected NSAIDs. In comparison to the controls, the green leafy vegetables treated with NSAIDs presented irregular growth of glandular trichomes on the surface of the adaxial side of the leaves, less stomata, cells with less cytoplasm, irregular cell walls and randomly distributed chloroplasts. Of the three NSAIDs investigated in this study, ibuprofen presented the highest influence. The results obtained in this study can be used to better estimate the impact of drugs on the environment and to improve awareness on the importance of the responsible use of drugs.


Subject(s)
Anti-Inflammatory Agents, Non-Steroidal/adverse effects , Atriplex/drug effects , Environmental Pollutants/adverse effects , Lactuca/drug effects , Photosynthesis/drug effects , Spinacia oleracea/drug effects , Volatile Organic Compounds/metabolism , Atriplex/physiology , Atriplex/ultrastructure , Diclofenac/adverse effects , Ibuprofen/adverse effects , Lactuca/physiology , Lactuca/ultrastructure , Microscopy, Electron, Scanning , Microscopy, Electron, Transmission , Naproxen/adverse effects , Plant Leaves/drug effects , Plant Leaves/ultrastructure , Spinacia oleracea/physiology , Spinacia oleracea/ultrastructure
SELECTION OF CITATIONS
SEARCH DETAIL
...