Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 81
Filter
1.
Parasit Vectors ; 17(1): 267, 2024 Jun 25.
Article in English | MEDLINE | ID: mdl-38918848

ABSTRACT

BACKGROUND: Past findings demonstrate that arthropods can egest midgut microbiota into the host skin leading to dual colonization of the vertebrate host with pathogens and saliva microbiome. A knowledge gap exists on how the saliva microbiome interacts with the pathogen in the saliva. To fill this gap, we need to first define the microbial composition of mosquito saliva. METHODS: The current study aimed at analyzing and comparing the microbial profile of Aedes albopictus saliva and midgut as well as assessing the impact of Zika virus (ZIKV) infection on the midgut and saliva microbial composition. Colony-reared Ae. albopictus strains were either exposed to ZIKV infectious or noninfectious bloodmeal. At 14 ays postinfection, the 16S V3-V4 hypervariable rRNA region was amplified from midgut and saliva samples and sequenced on an Illumina MiSeq platform. The relative abundance and diversity of midgut and saliva microbial taxa were assessed. RESULTS: We observed a richer microbial community in the saliva compared with the midgut, yet some of the microbial taxa were common in the midgut and saliva. ZIKV infection did not impact the microbial diversity of midgut or saliva. Further, we identified Elizabethkingia spp. in the Ae. albopictus saliva. CONCLUSIONS: This study provides insights into the microbial community of the Ae. albopictus saliva as well as the influence of ZIKV infection on the microbial composition of its midgut and saliva. The identification of Elizabethkingia spp., an emerging pathogen of global health significance, in Ae. albopictus saliva is of medical importance. Future studies to assess the interactions between Ae. albopictus saliva microbiome and ZIKV could lead to novel strategies for developing transmission barrier tools.


Subject(s)
Aedes , Microbiota , Mosquito Vectors , Saliva , Zika Virus , Animals , Saliva/microbiology , Saliva/virology , Aedes/microbiology , Aedes/virology , Zika Virus/genetics , Zika Virus/isolation & purification , Mosquito Vectors/microbiology , Mosquito Vectors/virology , Gastrointestinal Microbiome , RNA, Ribosomal, 16S/genetics , Female , Zika Virus Infection/transmission , Zika Virus Infection/virology , Gastrointestinal Tract/microbiology , Gastrointestinal Tract/virology
2.
iScience ; 27(6): 109934, 2024 Jun 21.
Article in English | MEDLINE | ID: mdl-38799579

ABSTRACT

Temperature is increasing globally, and vector-borne diseases are particularly responsive to such increases. While it is known that temperature influences mosquito life history traits, transmission models have not historically considered population-specific effects of temperature. We assessed the interaction between Culex pipiens population and temperature in New York State (NYS) and utilized novel empirical data to inform predictive models of West Nile virus (WNV) transmission. Genetically and regionally distinct populations from NYS were reared at various temperatures, and life history traits were monitored and used to inform trait-based models. Variation in Cx. pipiens life history traits and population-dependent thermal responses account for a predicted 2.9°C difference in peak transmission that is reflected in regional differences in WNV prevalence. We additionally identified genetic signatures that may contribute to distinct thermal responses. Together, these data demonstrate how population variation contributes to significant geographic variability in arbovirus transmission with changing climates.

3.
Viruses ; 16(3)2024 03 16.
Article in English | MEDLINE | ID: mdl-38543821

ABSTRACT

Powassan virus (POWV) is a tick-borne flavivirus endemic in North America and Russia. Experimental infections with POWV have confirmed horizontal, transstadial, vertical, and cofeeding transmission routes for potential virus maintenance. In the field, vertical transmission has never been observed. During New York State tick-borne pathogen surveillance, POWV RNA and/or infectious POWV was detected in five pools of questing Ixodes scapularis larvae. Additionally, engorged female I. scapularis adults were collected from hunter-harvested white-tailed deer (Odocoileus virginianus) in a region with relatively high tick infection rates of POWV and allowed to oviposit under laboratory conditions. POWV RNA was detected in three female adult husks and one pool of larvae from a positive female. Infectious virus was isolated from all three RNA-positive females and the single positive larval pool. The detection of RNA and infectious virus in unfed questing larvae from the field and larvae from replete females collected from the primary tick host implicates vertical transmission as a potential mechanism for the maintenance of POWV in I. scapularis in nature, and elucidates the potential epidemiological significance of larval ticks in the transmission of POWV to humans.


Subject(s)
Deer , Encephalitis Viruses, Tick-Borne , Ixodes , Humans , Animals , Female , Encephalitis Viruses, Tick-Borne/genetics , Deer/genetics , RNA
4.
Viruses ; 16(2)2024 02 04.
Article in English | MEDLINE | ID: mdl-38400026

ABSTRACT

Powassan virus is an emerging tick-borne pathogen capable of causing severe neuroinvasive disease. As the incidence of human Powassan virus grows both in magnitude and geographical range, the development of sensitive detection methods for diagnostics and surveillance is critical. In this study, a Taqman-based triplex real-time PCR assay was developed for the simultaneous and quantitative detection of Powassan virus and Powassan virus lineage II (deer tick virus) in Ixodes scapularis ticks. An exon-exon junction internal control was built-in to allow for accurate detection of RNA quality and the failure of RNA extraction. The newly developed assay was also applied to survey deer tick virus in tick populations at 13 sites on Cape Cod and Martha's Vineyard Island in Massachusetts. The assay's performance was compared with the Luminex xMAP MultiFLEX Vector-borne Panel 2. The results suggested that the real-time PCR method was more sensitive. Powassan virus infection rates among ticks collected from these highly endemic tick areas ranged from 0.0 to 10.4%, highlighting the fine-scale geographic variations in deer tick virus presence in this region. Looking forward, our PCR assay could be adopted in other Powassan virus surveillance systems.


Subject(s)
Encephalitis Viruses, Tick-Borne , Ixodes , Animals , Humans , Encephalitis Viruses, Tick-Borne/genetics , Real-Time Polymerase Chain Reaction , Watchful Waiting , RNA
5.
Am J Trop Med Hyg ; 109(6): 1329-1332, 2023 12 06.
Article in English | MEDLINE | ID: mdl-37972332

ABSTRACT

Jamestown Canyon virus (JCV) (Peribunyavirdae; Orthobunyavirus) is a mosquito-borne pathogen endemic to North America. The genome is composed of three segmented negative-sense RNA fragments designated as small, medium, and large. Jamestown Canyon virus is an emerging threat to public health, and infection in humans can cause severe neurological diseases, including encephalitis and meningitis. We report JCV mosquito surveillance data from 2001 to 2022 in New York state. Jamestown Canyon virus was detected in 12 mosquito species, with the greatest prevalence in Aedes canadensis and Anopheles punctipennis. Detection fluctuated annually, with the highest levels recorded in 2020. Overall, JCV infection rates were significantly greater from 2012 to 2022 compared with 2001 to 2011. Full-genome sequencing and phylogenetic analysis were also performed with representative JCV isolates collected from 2003 to 2022. These data demonstrated the circulation of numerous genetic variants, broad geographic separation, and the first identification of lineage B JCV in New York state in 2022.


Subject(s)
Anopheles , Encephalitis Virus, California , Encephalitis, California , Animals , Humans , Encephalitis Virus, California/genetics , New York/epidemiology , Phylogeny
6.
J Med Entomol ; 60(6): 1183-1196, 2023 11 14.
Article in English | MEDLINE | ID: mdl-37862097

ABSTRACT

Heartland (HRTV) and Bourbon (BRBV) viruses are newly identified tick-borne viruses, isolated from serious clinical cases in 2009 and 2014, respectively. Both viruses originated in the lower Midwest United States near the border of Missouri and Kansas, cause similar disease manifestations, and are presumably vectored by the same tick species, Amblyomma americanum Linnaeus (Ixodida: Ixodidae). In this article, we provide a current review of HRTV and BRBV, including the virology, epidemiology, and ecology of the viruses with an emphasis on the tick vector. We touch on current challenges of vector control and surveillance, and we discuss future directions in the study of these emergent pathogens.


Subject(s)
Ixodidae , Phlebovirus , Ticks , United States , Animals , Amblyomma , Missouri
7.
iScience ; 26(8): 107468, 2023 Aug 18.
Article in English | MEDLINE | ID: mdl-37593454

ABSTRACT

West Nile virus (WNV), the most prevalent arthropod-borne virus (arbovirus) in the United States, is maintained in a cycle between Culex spp. mosquitoes and birds. Arboviruses exist within hosts and vectors as a diverse set of closely related genotypes. In theory, this genetic diversity can facilitate adaptation to distinct environments during host cycling, yet host-specific fitness of minority genotypes has not been assessed. Utilizing WNV deep-sequencing data, we previously identified a naturally occurring, mosquito-biased substitution, NS3 P319L. Using both cell culture and experimental infection in natural hosts, we demonstrated that this substitution confers attenuation in vertebrate hosts and increased transmissibility by mosquitoes. Biochemical assays demonstrated temperature-sensitive ATPase activity consistent with host-specific phenotypes. Together these data confirm the maintenance of host-specific minority variants in arbovirus mutant swarms, suggest a unique role for NS3 in viral fitness, and demonstrate that intrahost sequence data can inform mechanisms of host-specific adaptation.

8.
Curr Biol ; 33(12): 2515-2527.e6, 2023 06 19.
Article in English | MEDLINE | ID: mdl-37295427

ABSTRACT

Eastern equine encephalitis virus (EEEV) causes a rare but severe disease in horses and humans and is maintained in an enzootic transmission cycle between songbirds and Culiseta melanura mosquitoes. In 2019, the largest EEEV outbreak in the United States for more than 50 years occurred, centered in the Northeast. To explore the dynamics of the outbreak, we sequenced 80 isolates of EEEV and combined them with existing genomic data. We found that, similar to previous years, cases were driven by multiple independent but short-lived virus introductions into the Northeast from Florida. Once in the Northeast, we found that Massachusetts was important for regional spread. We found no evidence of any changes in viral, human, or bird factors which would explain the increase in cases in 2019, although the ecology of EEEV is complex and further data is required to explore these in more detail. By using detailed mosquito surveillance data collected by Massachusetts and Connecticut, however, we found that the abundance of Cs. melanura was exceptionally high in 2019, as was the EEEV infection rate. We employed these mosquito data to build a negative binomial regression model and applied it to estimate early season risks of human or horse cases. We found that the month of first detection of EEEV in mosquito surveillance data and vector index (abundance multiplied by infection rate) were predictive of cases later in the season. We therefore highlight the importance of mosquito surveillance programs as an integral part of public health and disease control.


Subject(s)
Culicidae , Encephalitis Virus, Eastern Equine , Encephalomyelitis, Equine , Songbirds , Animals , Horses , Humans , Encephalitis Virus, Eastern Equine/genetics , Mosquito Vectors , Encephalomyelitis, Equine/epidemiology , Encephalomyelitis, Equine/veterinary , Massachusetts/epidemiology , Disease Outbreaks/veterinary
9.
Microorganisms ; 11(6)2023 Jun 15.
Article in English | MEDLINE | ID: mdl-37375092

ABSTRACT

Bourbon virus (BRBV, family Orthomyxoviridae) is a tickborne virus recently detected in the United States (US). BRBV was first identified from a fatal human case in 2014 in Bourbon County, Kansas. Enhanced surveillance in Kansas and Missouri implicated Amblyomma americanum as the primary vector for BRBV. Historically, BRBV was only detected in the lower midwestern US, but since 2020 it has been reported in North Carolina, Virginia, New Jersey, and New York State (NYS). This study aimed to elucidate genetic and phenotypic characteristics of BRBV strains from NYS through whole genome sequencing and the assessment of replication kinetics in mammalian cultures and A. americanum nymphs. Sequence analysis revealed the existence of two divergent BRBV clades circulating in NYS. BRBV NY21-2143 is closely related to the midwestern BRBV strains but has unique substitutions in the glycoprotein. Two other NYS BRBV strains, BRBV NY21-1814 and BRBV NY21-2666, form a distinct clade unique from previously sequenced BRBV strains. Phenotypic diversification was also detected in NYS BRBV strains compared to each other and midwestern BRBV strains, with BRBV NY21-2143 displaying attenuation in rodent-derived cell culture and a fitness advantage in experimentally infected A. americanum. These data suggest genetic and phenotypic diversification of emergent BRBV strains circulating in NYS that could contribute to increased spread of BRBV in the northeastern US.

10.
Proc Natl Acad Sci U S A ; 120(27): e2301549120, 2023 07 04.
Article in English | MEDLINE | ID: mdl-37364114

ABSTRACT

Modern infectious disease outbreaks often involve changes in host tropism, the preferential adaptation of pathogens to specific hosts. The Lyme disease-causing bacterium Borrelia burgdorferi (Bb) is an ideal model to investigate the molecular mechanisms of host tropism, because different variants of these tick-transmitted bacteria are distinctly maintained in rodents or bird reservoir hosts. To survive in hosts and escape complement-mediated immune clearance, Bb produces the outer surface protein CspZ that binds the complement inhibitor factor H (FH) to facilitate bacterial dissemination in vertebrates. Despite high sequence conservation, CspZ variants differ in human FH-binding ability. Together with the FH polymorphisms between vertebrate hosts, these findings suggest that minor sequence variation in this bacterial outer surface protein may confer dramatic differences in host-specific, FH-binding-mediated infectivity. We tested this hypothesis by determining the crystal structure of the CspZ-human FH complex, and identifying minor variation localized in the FH-binding interface yielding bird and rodent FH-specific binding activity that impacts infectivity. Swapping the divergent region in the FH-binding interface between rodent- and bird-associated CspZ variants alters the ability to promote rodent- and bird-specific early-onset dissemination. We further linked these loops and respective host-specific, complement-dependent phenotypes with distinct CspZ phylogenetic lineages, elucidating evolutionary mechanisms driving host tropism emergence. Our multidisciplinary work provides a novel molecular basis for how a single, short protein motif could greatly modulate pathogen host tropism.


Subject(s)
Borrelia burgdorferi , Lyme Disease , Animals , Humans , Immune Evasion/genetics , Phylogeny , Viral Tropism , Lyme Disease/microbiology , Bacterial Proteins/metabolism , Complement Factor H/genetics , Complement Factor H/metabolism , Complement System Proteins/genetics , Membrane Proteins/metabolism
11.
Proc Natl Acad Sci U S A ; 120(16): e2218012120, 2023 04 18.
Article in English | MEDLINE | ID: mdl-37040418

ABSTRACT

Powassan virus is an emerging tick-borne virus of concern for public health, but very little is known about its transmission patterns and ecology. Here, we expanded the genomic dataset by sequencing 279 Powassan viruses isolated from Ixodes scapularis ticks from the northeastern United States. Our phylogeographic reconstructions revealed that Powassan virus lineage II was likely introduced or emerged from a relict population in the Northeast between 1940 and 1975. Sequences strongly clustered by sampling location, suggesting a highly focal geographical distribution. Our analyses further indicated that Powassan virus lineage II emerged in the northeastern United States mostly following a south-to-north pattern, with a weighted lineage dispersal velocity of ~3 km/y. Since the emergence in the Northeast, we found an overall increase in the effective population size of Powassan virus lineage II, but with growth stagnating during recent years. The cascading effect of population expansion of white-tailed deer and I. scapularis populations likely facilitated the emergence of Powassan virus in the northeastern United States.


Subject(s)
Deer , Encephalitis Viruses, Tick-Borne , Ixodes , Animals , New England
12.
medRxiv ; 2023 Mar 06.
Article in English | MEDLINE | ID: mdl-36945576

ABSTRACT

Eastern equine encephalitis virus (EEEV) causes a rare but severe disease in horses and humans, and is maintained in an enzootic transmission cycle between songbirds and Culiseta melanura mosquitoes. In 2019, the largest EEEV outbreak in the United States for more than 50 years occurred, centered in the Northeast. To explore the dynamics of the outbreak, we sequenced 80 isolates of EEEV and combined them with existing genomic data. We found that, like previous years, cases were driven by frequent short-lived virus introductions into the Northeast from Florida. Once in the Northeast, we found that Massachusetts was important for regional spread. We found no evidence of any changes in viral, human, or bird factors which would explain the increase in cases in 2019. By using detailed mosquito surveillance data collected by Massachusetts and Connecticut, however, we found that the abundance of Cs. melanura was exceptionally high in 2019, as was the EEEV infection rate. We employed these mosquito data to build a negative binomial regression model and applied it to estimate early season risks of human or horse cases. We found that the month of first detection of EEEV in mosquito surveillance data and vector index (abundance multiplied by infection rate) were predictive of cases later in the season. We therefore highlight the importance of mosquito surveillance programs as an integral part of public health and disease control.

13.
Emerg Microbes Infect ; 12(1): 2155585, 2023 Dec.
Article in English | MEDLINE | ID: mdl-36503411

ABSTRACT

Powassan virus (POWV, family Flaviviridae) is a reemerging tick-borne virus endemic in North America and Russia. In 1997, a POWV-like agent was isolated from Ixodes scapularis in New England and determined to be genetically distinct from the original POWV isolate. This revealed the existence of two lineages: lineage 1, prototype Powassan virus (POWV-1) and lineage 2, deer tick virus (DTV). POWV-1 is thought to be primarily maintained in a cycle between I. cookei and woodchucks and I. marxi and squirrels, while DTV is primarily maintained in a cycle between I. scapularis and small mammal hosts. Recent tick, mammalian, and human isolates from New York State (NYS) have been identified as DTV, but for the first time in 45 years, we detected four POWV-1 isolates, including the first reported isolation of POWV-1 from I. scapularis. We aimed to investigate genotypic and phenotypic characteristics of recent NYS isolates through sequence analysis and evaluation of replication kinetics in vitro and in vivo. Our sequencing revealed genetic divergence between NYS POWV-1 isolates, with two distinct foci. We found that POWV-1 isolates displayed variable replication kinetics in nymphal ticks but not in cell culture. POWV-1 isolated from I. scapularis displayed increased fitness in experimentally infected I. scapularis as compared to historic and recent POWV-1 isolates from I. cookei. These data suggest the emergence of divergent POWV-1 strains in alternate tick hosts and maintenance of genetically and phenotypically discrete POWV-1 foci.


Subject(s)
Encephalitis Viruses, Tick-Borne , Ixodes , Animals , Humans , Encephalitis Viruses, Tick-Borne/genetics , New York/epidemiology , North America , Russia , Mammals
14.
Emerg Infect Dis ; 29(1): 145-148, 2023 01.
Article in English | MEDLINE | ID: mdl-36573733

ABSTRACT

In July 2019, Bourbon virus RNA was detected in an Amblyomma americanum tick removed from a resident of Long Island, New York, USA. Tick infection and white-tailed deer (Odocoileus virginianus) serosurvey results demonstrate active transmission in New York, especially Suffolk County, emphasizing a need for surveillance anywhere A. americanum ticks are reported.


Subject(s)
Deer , Ticks , Animals , New York/epidemiology , Arachnid Vectors
15.
mSystems ; 7(4): e0048822, 2022 08 30.
Article in English | MEDLINE | ID: mdl-35938719

ABSTRACT

Host association-the selective adaptation of pathogens to specific host species-evolves through constant interactions between host and pathogens, leaving a lot yet to be discovered on immunological mechanisms and genomic determinants. The causative agents of Lyme disease (LD) are spirochete bacteria composed of multiple species of the Borrelia burgdorferi sensu lato complex, including B. burgdorferi (Bb), the main LD pathogen in North America-a useful model for the study of mechanisms underlying host-pathogen association. Host adaptation requires pathogens' ability to evade host immune responses, such as complement, the first-line innate immune defense mechanism. We tested the hypothesis that different host-adapted phenotypes among Bb strains are linked to polymorphic loci that confer complement evasion traits in a host-specific manner. We first examined the survivability of 20 Bb strains in sera in vitro and/or bloodstream and tissues in vivo from rodent and avian LD models. Three groups of complement-dependent host-association phenotypes emerged. We analyzed complement-evasion genes, identified a priori among all strains and sequenced and compared genomes for individual strains representing each phenotype. The evolutionary history of ospC loci is correlated with host-specific complement-evasion phenotypes, while comparative genomics suggests that several gene families and loci are potentially involved in host association. This multidisciplinary work provides novel insights into the functional evolution of host-adapted phenotypes, building a foundation for further investigation of the immunological and genomic determinants of host association. IMPORTANCE Host association is the phenotype that is commonly found in many pathogens that preferential survive in particular hosts. The Lyme disease (LD)-causing agent, B. burgdorferi (Bb), is an ideal model to study host association, as Bb is mainly maintained in nature through rodent and avian hosts. A widespread yet untested concept posits that host association in Bb strains is linked to Bb functional genetic variation conferring evasion to complement, an innate defense mechanism in vertebrate sera. Here, we tested this concept by grouping 20 Bb strains into three complement-dependent host-association phenotypes based on their survivability in sera and/or bloodstream and distal tissues in rodent and avian LD models. Phylogenomic analysis of these strains further correlated several gene families and loci, including ospC, with host-specific complement-evasion phenotypes. Such multifaceted studies thus pave the road to further identify the determinants of host association, providing mechanistic insights into host-pathogen interaction.


Subject(s)
Borrelia burgdorferi , Borrelia , Lyme Disease , Humans , Phylogeny , Lyme Disease/genetics , Borrelia burgdorferi/genetics , Complement System Proteins/genetics
16.
Parasit Vectors ; 15(1): 226, 2022 Jun 23.
Article in English | MEDLINE | ID: mdl-35739573

ABSTRACT

BACKGROUND: Jamestown Canyon virus (JCV; Peribunyaviridae, Orthobunyavirus) is a mosquito-borne pathogen belonging to the California serogroup. The virus is endemic in North America and increasingly recognized as a public health concern. In this study, we determined the vector competence of Anopheles (An.) quadrimaculatus and Aedes (Ae.) albopictus for five JCV strains belonging to the two lineages circulating in the Northeast. METHODS: An. quadrimaculatus and Ae. albopictus were fed blood meals containing two lineage A strains and three lineage B strains. Vector competence of both mosquito species was evaluated at 7- and 14-days post-feeding (dpf) by testing for virus presence in bodies, legs, and saliva. RESULTS: Our results demonstrated that Ae. albopictus mosquitoes are a competent vector for both lineages, with similar transmission levels for all strains tested. Variable levels of infection (46-83%) and dissemination (17-38%) were measured in An. quadrimaculatus, yet no transmission was detected for the five JCV strains evaluated. CONCLUSIONS: Our results demonstrate that establishment of Ae. albopictus in the Northeast could increase the risk of JCV but suggest An. quadrimaculatus are not a competent vector for JCV.


Subject(s)
Aedes , Anopheles , Encephalitis Virus, California , Animals , Encephalitis Virus, California/genetics , Mosquito Vectors , New England
17.
Viruses ; 14(5)2022 05 17.
Article in English | MEDLINE | ID: mdl-35632818

ABSTRACT

Flaviviruses include several emerging and re-emerging arboviruses which cause millions of infections each year. Although relatively well-studied, much remains unknown regarding the mechanisms and means by which these viruses readily alternate and adapt to different hosts and environments. Here, we review a subset of the different aspects of flaviviral biology which impact host switching and viral fitness. These include the mechanism of replication and structural biology of the NS3 and NS5 proteins, which reproduce the viral genome; rates of mutation resulting from this replication and the role of mutational frequency in viral fitness; and the theory of quasispecies evolution and how it contributes to our understanding of genetic and phenotypic plasticity.


Subject(s)
Flavivirus , Adaptation, Physiological , Flavivirus/genetics , Genome, Viral , Nucleotidyltransferases/genetics , RNA-Dependent RNA Polymerase/genetics
18.
Emerg Microbes Infect ; 11(1): 988-999, 2022 Dec.
Article in English | MEDLINE | ID: mdl-35317702

ABSTRACT

West Nile virus (WNV; Flavivirus, Flaviviridae) was introduced to New York State (NYS) in 1999 and rapidly expanded its range through the continental United States (US). Apart from the displacement of the introductory NY99 genotype with the WN02 genotype, there has been little evidence of adaptive evolution of WNV in the US. WNV NY10, characterized by shared amino acid substitutions R1331K and I2513M, emerged in 2010 coincident with increased WNV cases in humans and prevalence in mosquitoes. Previous studies demonstrated an increase in frequency of NY10 strains in NYS and evidence of positive selection. Here, we present updated surveillance and sequencing data for WNV in NYS and investigate if NY10 genotype strains are associated with phenotypic change consistent with an adaptive advantage. Results confirm a significant increase in prevalence in mosquitoes though 2018, and updated sequencing demonstrates a continued dominance of NY10. We evaluated NY10 strains in Culex pipiens mosquitoes to assess vector competence and found that the NY10 genotype is associated with both increased infectivity and transmissibility. Experimental infection of American robins (Turdus migratorius) was additionally completed to assess viremia kinetics of NY10 relative to WN02. Modelling the increased infectivity and transmissibility of the NY10 strains together with strain-specific viremia demonstrates a mechanistic basis for selection that has likely contributed to the increased prevalence of WNV in NYS.


Subject(s)
West Nile Fever , West Nile virus , Animals , Humans , Mosquito Vectors , New York/epidemiology , Prevalence , West Nile virus/genetics
19.
Emerg Microbes Infect ; 11(1): 741-748, 2022 Dec.
Article in English | MEDLINE | ID: mdl-35179429

ABSTRACT

We report surveillance results of Cache Valley virus (CVV; Peribunyaviridae, Orthobunyavirus) from 2017 to 2020 in New York State (NYS). Infection rates were calculated using the maximum likelihood estimation (MLE) method by year, region, and mosquito species. The highest infection rates were identified among Anopheles spp. mosquitoes and we detected the virus in Aedes albopictus for the first time in NYS. Based on our previous Anopheles quadrimaculatus vector competence results for nine CVV strains, we selected among them three stains for further characterization. These include two CVV reassortants (PA and 15041084) and one CVV lineage 2 strain (Hu-2011). We analyzed full genomes, compared in vitro growth kinetics and assessed vector competence of Aedes albopictus. Sequence analysis of the two reassortant strains (PA and 15041084) revealed 0.3%, 0.4%, and 0.3% divergence; and 1, 10, and 6 amino acid differences for the S, M, and L segments, respectively. We additionally found that the PA strain was attenuated in vertebrate (Vero) and mosquito (C6/36) cell culture. Furthemore, Ae. albopictus mosquitoes are competent vectors for CVV Hu-2011 (16.7-62.1% transmission rates) and CVV 15041084 (27.3-48.0% transmission rates), but not for the human reassortant (PA) isolate, which did not disseminate from the mosquito midgut. Together, our results demonstrate significant phenotypic variability among strains and highlight the capacity for Ae. albopictus to act as a vector of CVV.


Subject(s)
Aedes , Bunyamwera virus , Animals , Bunyamwera virus/genetics , Disease Vectors , Humans , Mosquito Vectors , New York
20.
Emerg Infect Dis ; 28(2): 303-313, 2022 02.
Article in English | MEDLINE | ID: mdl-35075998

ABSTRACT

Cache Valley virus (CVV) is a mosquitoborne virus that infects livestock and humans. We report results of surveillance for CVV in New York, USA, during 2000-2016; full-genome analysis of selected CVV isolates from sheep, horse, humans, and mosquitoes from New York and Canada; and phenotypic characterization of selected strains. We calculated infection rates by using the maximum-likelihood estimation method by year, region, month, and mosquito species. The highest maximum-likelihood estimations were for Anopheles spp. mosquitoes. Our phylogenetic analysis identified 2 lineages and found evidence of segment reassortment. Furthermore, our data suggest displacement of CVV lineage 1 by lineage 2 in New York and Canada. Finally, we showed increased vector competence of An. quadrimaculatus mosquitoes for lineage 2 strains of CVV compared with lineage 1 strains.


Subject(s)
Anopheles , Bunyamwera virus , Animals , Bunyamwera virus/genetics , Horses , Mosquito Vectors , New York/epidemiology , Phylogeny , Sheep
SELECTION OF CITATIONS
SEARCH DETAIL
...