Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 47
Filter
Add more filters










Publication year range
1.
Int J Mol Sci ; 25(8)2024 Apr 10.
Article in English | MEDLINE | ID: mdl-38673778

ABSTRACT

Pre-mRNA splicing plays a key role in the regulation of gene expression. Recent discoveries suggest that defects in pre-mRNA splicing, resulting from the dysfunction of certain splicing factors, can impact the expression of genes crucial for genome surveillance mechanisms, including those involved in cellular response to DNA damage. In this study, we analyzed how cells with a non-functional spliceosome-associated Gpl1-Gih35-Wdr83 complex respond to DNA damage. Additionally, we investigated the role of this complex in regulating the splicing of factors involved in DNA damage repair. Our findings reveal that the deletion of any component within the Gpl1-Gih35-Wdr83 complex leads to a significant accumulation of unspliced pre-mRNAs of DNA repair factors. Consequently, mutant cells lacking this complex exhibit increased sensitivity to DNA-damaging agents. These results highlight the importance of the Gpl1-Gih35-Wdr83 complex in regulating the expression of DNA repair factors, thereby protecting the stability of the genome following DNA damage.


Subject(s)
DNA Damage , DNA Repair , RNA Splicing Factors , RNA Splicing , DNA Damage/genetics , DNA Repair/genetics , Gene Expression Regulation, Fungal , RNA Precursors/genetics , RNA Precursors/metabolism , RNA Splicing Factors/metabolism , RNA Splicing Factors/genetics , Schizosaccharomyces/genetics , Schizosaccharomyces/metabolism , Schizosaccharomyces pombe Proteins/genetics , Schizosaccharomyces pombe Proteins/metabolism , Spliceosomes/metabolism , Spliceosomes/genetics , Multiprotein Complexes/genetics , Multiprotein Complexes/metabolism
2.
Life (Basel) ; 13(3)2023 Feb 21.
Article in English | MEDLINE | ID: mdl-36983760

ABSTRACT

Pre-mRNA splicing is a process used by eukaryotic cells to generate messenger RNAs that can be translated into proteins. During splicing, the non-coding regions of the RNAs (introns) are removed from pre-mRNAs and the coding regions (exons) are joined together, resulting in mature mRNAs. The particular steps of splicing are executed by the multimegadalton complex called a spliceosome. This complex is composed of small nuclear ribonucleoproteins, various splicing factors, and other regulatory and auxiliary proteins. In recent years, various post-translational modifications of splicing factors have been shown to contribute significantly to regulation of processes involved in pre-mRNA splicing. In this review, we provide an overview of the most important post-translational modifications of splicing factors that are indispensable for their normal function during pre-mRNA splicing (i.e., phosphorylation, acetylation, methylation, ubiquitination and sumoylation). Moreover, we also discuss how the defects in regulation of splicing factors are related to the development of cancer.

3.
Methods Mol Biol ; 2603: 19-29, 2023.
Article in English | MEDLINE | ID: mdl-36370267

ABSTRACT

Stable isotope labeling by amino acids in cell culture (SILAC) provides a powerful tool to quantify proteins and posttranslational modifications. Here we describe how to apply SILAC for protein identification and quantification in synchronous meiotic cultures induced by inactivation of the Pat1 kinase in the fission yeast Schizosaccharomyces pombe.


Subject(s)
Schizosaccharomyces pombe Proteins , Schizosaccharomyces , Schizosaccharomyces/metabolism , Proteomics , Meiosis , Proteins/metabolism , Schizosaccharomyces pombe Proteins/genetics , Schizosaccharomyces pombe Proteins/metabolism
4.
Int J Mol Sci ; 23(21)2022 Oct 24.
Article in English | MEDLINE | ID: mdl-36361590

ABSTRACT

Pre-mRNA splicing plays a fundamental role in securing protein diversity by generating multiple transcript isoforms from a single gene. Recently, it has been shown that specific G-patch domain-containing proteins are critical cofactors involved in the regulation of splicing processes. In this study, using the knock-out strategy, affinity purification and the yeast-two-hybrid assay, we demonstrated that the spliceosome-associated G-patch protein Gpl1 of the fission yeast S. pombe mediates interactions between putative RNA helicase Gih35 (SPAC20H4.09) and WD repeat protein Wdr83, and ensures their binding to the spliceosome. Furthermore, RT-qPCR analysis of the splicing efficiency of deletion mutants indicated that the absence of any of the components of the Gpl1-Gih35-Wdr83 complex leads to defective splicing of fet5 and pwi1, the reference genes whose unspliced isoforms harboring premature stop codons are targeted for degradation by the nonsense-mediated decay (NMD) pathway. Together, our results shed more light on the functional interactome of G-patch protein Gpl1 and revealed that the Gpl1-Gih35-Wdr83 complex plays an important role in the regulation of pre-mRNA splicing in S. pombe.


Subject(s)
Schizosaccharomyces pombe Proteins , Schizosaccharomyces , Schizosaccharomyces/genetics , Schizosaccharomyces/metabolism , Spliceosomes/genetics , Spliceosomes/metabolism , RNA Precursors/genetics , RNA Splicing , Schizosaccharomyces pombe Proteins/genetics , Schizosaccharomyces pombe Proteins/metabolism
5.
Int J Mol Sci ; 23(7)2022 Mar 24.
Article in English | MEDLINE | ID: mdl-35408921

ABSTRACT

Protein kinases are important enzymes, involved in the regulation of various cellular processes [...].


Subject(s)
Protein Kinases , Disease , Phosphorylation , Protein Kinases/metabolism , Substrate Specificity
6.
Int J Mol Sci ; 23(7)2022 Apr 01.
Article in English | MEDLINE | ID: mdl-35409298

ABSTRACT

Cohesin, a multi-subunit protein complex, plays important roles in sister chromatid cohesion, DNA replication, chromatin organization, gene expression, transcription regulation, and the recombination or repair of DNA damage. Recently, several studies suggested that the functions of cohesin rely not only on cohesin-related protein-protein interactions, their post-translational modifications or specific DNA modifications, but that some RNA processing factors also play an important role in the regulation of cohesin functions. Therefore, the mutations and changes in the expression of cohesin subunits or alterations in the interactions between cohesin and RNA processing factors have been shown to have an impact on cohesion, the fidelity of chromosome segregation and, ultimately, on genome stability. In this review, we provide an overview of the cohesin complex and its role in chromosome segregation, highlight the causes and consequences of mutations and changes in the expression of cohesin subunits, and discuss the RNA processing factors that participate in the regulation of the processes involved in chromosome segregation. Overall, an understanding of the molecular determinants of the interplay between cohesin and RNA processing factors might help us to better understand the molecular mechanisms ensuring the integrity of the genome.


Subject(s)
Chromatids , Chromosomal Proteins, Non-Histone , Cell Cycle Proteins/metabolism , Chromatids/metabolism , Chromosomal Proteins, Non-Histone/genetics , Chromosomal Proteins, Non-Histone/metabolism , Chromosome Segregation , Genomic Instability , Humans , RNA Processing, Post-Transcriptional , Cohesins
7.
STAR Protoc ; 3(1): 101137, 2022 03 18.
Article in English | MEDLINE | ID: mdl-35128479

ABSTRACT

Many cellular processes require the activities of complex molecular machines composed of several protein subunits. Insights into these systems can be gained by isolation of protein complexes followed by in vitro analyses determining the identity, posttranslational modifications, and interactions among proteins. Here, we present a protocol for tandem affinity purification (TAP) of protein complexes from the fission yeast Schizosaccharomyces pombe. The protocol employs cells expressing C-terminally TAP-tagged proteins and is suitable for the analysis of purified proteins by mass spectrometry. For complete information on the use and execution of this protocol, please refer to Cipakova et al. (2019).


Subject(s)
Schizosaccharomyces , Mass Spectrometry , Proteins/metabolism , Schizosaccharomyces/genetics , Tandem Affinity Purification
8.
Genes (Basel) ; 12(7)2021 06 30.
Article in English | MEDLINE | ID: mdl-34208949

ABSTRACT

The evolutionarily conserved Swi5-Sfr1 complex plays an important role in homologous recombination, a process crucial for the maintenance of genomic integrity. Here, we purified Schizosaccharomyces pombe Swi5-Sfr1 complex from meiotic cells and analyzed it by mass spectrometry. Our analysis revealed new phosphorylation sites on Swi5 and Sfr1. We found that mutations that prevent phosphorylation of Swi5 and Sfr1 do not impair their function but swi5 and sfr1 mutants encoding phosphomimetic aspartate at the identified phosphorylation sites are only partially functional. We concluded that during meiosis, Swi5 associates with Sfr1 and both Swi5 and Sfr1 proteins are phosphorylated. However, the functional relevance of Swi5 and Sfr1 phosphorylation remains to be determined.


Subject(s)
DNA Damage , DNA Repair , Homologous Recombination , Schizosaccharomyces pombe Proteins/metabolism , Schizosaccharomyces/metabolism , Meiosis , Phosphorylation , Protein Binding , Schizosaccharomyces/genetics , Schizosaccharomyces pombe Proteins/genetics
9.
Int J Mol Sci ; 22(13)2021 Jun 29.
Article in English | MEDLINE | ID: mdl-34209806

ABSTRACT

Pre-mRNA splicing is a key process in the regulation of gene expression. In the fission yeast Schizosaccharomyces pombe, Nrl1 regulates splicing and expression of several genes and non-coding RNAs, and also suppresses the accumulation of R-loops. Here, we report analysis of interactions between Nrl1 and selected RNA-processing proteins and regulation of Nrl1 function by phosphorylation. Bacterial two-hybrid system (BACTH) assays revealed that the N-terminal region of Nrl1 is important for the interaction with ATP-dependent RNA helicase Mtl1 while the C-terminal region of Nrl1 is important for interactions with spliceosome components Ctr1, Ntr2, and Syf3. Consistent with this result, tandem affinity purification showed that Mtl1, but not Ctr1, Ntr2, or Syf3, co-purifies with the N-terminal region of Nrl1. Interestingly, mass-spectrometry analysis revealed that in addition to previously identified phosphorylation sites, Nrl1 is also phosphorylated on serines 86 and 112, and that Nrl1-TAP co-purifies with Cka1, the catalytic subunit of casein kinase 2. In vitro assay showed that Cka1 can phosphorylate bacterially expressed Nrl1 fragments. An analysis of non-phosphorylatable nrl1 mutants revealed defects in gene expression and splicing consistent with the notion that phosphorylation is an important regulator of Nrl1 function. Taken together, our results provide insights into two mechanisms that are involved in the regulation of the spliceosome-associated factor Nrl1, namely domain-specific interactions between Nrl1 and RNA-processing proteins and post-translational modification of Nrl1 by phosphorylation.


Subject(s)
RNA-Binding Proteins/metabolism , Schizosaccharomyces pombe Proteins/chemistry , Schizosaccharomyces pombe Proteins/metabolism , Casein Kinase II/metabolism , Phosphorylation , Protein Binding , Protein Interaction Domains and Motifs , Protein Interaction Mapping , RNA Processing, Post-Transcriptional , RNA Splicing , Schizosaccharomyces/genetics , Schizosaccharomyces/metabolism , Schizosaccharomyces pombe Proteins/genetics , Schizosaccharomyces pombe Proteins/physiology , Spliceosomes/metabolism , Two-Hybrid System Techniques
10.
Int J Mol Sci ; 22(4)2021 Feb 09.
Article in English | MEDLINE | ID: mdl-33572424

ABSTRACT

The phosphorylation of proteins modulates various functions of proteins and plays an important role in the regulation of cell signaling. In recent years, label-free quantitative (LFQ) phosphoproteomics has become a powerful tool to analyze the phosphorylation of proteins within complex samples. Despite the great progress, the studies of protein phosphorylation are still limited in throughput, robustness, and reproducibility, hampering analyses that involve multiple perturbations, such as those needed to follow the dynamics of phosphoproteomes. To address these challenges, we introduce here the LFQ phosphoproteomics workflow that is based on Fe-IMAC phosphopeptide enrichment followed by strong anion exchange (SAX) and porous graphitic carbon (PGC) fractionation strategies. We applied this workflow to analyze the whole-cell phosphoproteome of the fission yeast Schizosaccharomyces pombe. Using this strategy, we identified 8353 phosphosites from which 1274 were newly identified. This provides a significant addition to the S. pombe phosphoproteome. The results of our study highlight that combining of PGC and SAX fractionation strategies substantially increases the robustness and specificity of LFQ phosphoproteomics. Overall, the presented LFQ phosphoproteomics workflow opens the door for studies that would get better insight into the complexity of the protein kinase functions of the fission yeast S. pombe.


Subject(s)
Chemical Fractionation/methods , Phosphoproteins/analysis , Proteomics/methods , Schizosaccharomyces pombe Proteins/analysis , Anion Exchange Resins/chemistry , Carbon/chemistry , Chromatography, Ion Exchange/methods , Graphite/chemistry , Phosphoproteins/chemistry , Porosity , Reproducibility of Results , Schizosaccharomyces , Schizosaccharomyces pombe Proteins/chemistry
11.
Nucleic Acids Res ; 49(4): 1914-1934, 2021 02 26.
Article in English | MEDLINE | ID: mdl-33511417

ABSTRACT

During homologous recombination, Dbl2 protein is required for localisation of Fbh1, an F-box helicase that efficiently dismantles Rad51-DNA filaments. RNA-seq analysis of dbl2Δ transcriptome showed that the dbl2 deletion results in upregulation of more than 500 loci in Schizosaccharomyces pombe. Compared with the loci with no change in expression, the misregulated loci in dbl2Δ are closer to long terminal and long tandem repeats. Furthermore, the misregulated loci overlap with antisense transcripts, retrotransposons, meiotic genes and genes located in subtelomeric regions. A comparison of the expression profiles revealed that Dbl2 represses the same type of genes as the HIRA histone chaperone complex. Although dbl2 deletion does not alleviate centromeric or telomeric silencing, it suppresses the silencing defect at the outer centromere caused by deletion of hip1 and slm9 genes encoding subunits of the HIRA complex. Moreover, our analyses revealed that cells lacking dbl2 show a slight increase of nucleosomes at transcription start sites and increased levels of methylated histone H3 (H3K9me2) at centromeres, subtelomeres, rDNA regions and long terminal repeats. Finally, we show that other proteins involved in homologous recombination, such as Fbh1, Rad51, Mus81 and Rad54, participate in the same gene repression pathway.


Subject(s)
Cell Cycle Proteins/metabolism , Gene Expression Regulation, Fungal , Gene Silencing , Homologous Recombination , Schizosaccharomyces pombe Proteins/metabolism , Schizosaccharomyces pombe Proteins/physiology , Transcription Factors/metabolism , Cell Cycle Proteins/antagonists & inhibitors , Centromere , Histone Code , Nucleosomes/metabolism , Repressor Proteins/physiology , Schizosaccharomyces/genetics , Schizosaccharomyces pombe Proteins/antagonists & inhibitors , Transcription Factors/antagonists & inhibitors
12.
Int J Mol Sci ; 21(20)2020 Oct 15.
Article in English | MEDLINE | ID: mdl-33076458

ABSTRACT

Protein kinases are important enzymes involved in the regulation of various cellular processes. To function properly, each protein kinase phosphorylates only a limited number of proteins among the thousands present in the cell. This provides a rapid and dynamic regulatory mechanism that controls biological functions of the proteins. Despite the importance of protein kinases, most of their substrates remain unknown. Recently, the advances in the fields of protein engineering, chemical genetics, and mass spectrometry have boosted studies on identification of bona fide substrates of protein kinases. Among the various methods in protein kinase specific substrate identification, genetically engineered protein kinases and quantitative phosphoproteomics have become promising tools. Herein, we review the current advances in the field of chemical genetics in analog-sensitive protein kinase mutants and highlight selected strategies for identifying protein kinase substrates and studying the dynamic nature of protein phosphorylation.


Subject(s)
Phosphoproteins/metabolism , Protein Kinases/metabolism , Proteomics/methods , Animals , Humans , Mass Spectrometry/methods , Phosphoproteins/chemistry , Phosphoproteins/genetics , Protein Interaction Mapping/methods , Protein Kinases/chemistry , Protein Kinases/genetics , Proteome/chemistry , Proteome/genetics , Proteome/metabolism
13.
Cell Cycle ; 19(14): 1777-1785, 2020 07.
Article in English | MEDLINE | ID: mdl-32594847

ABSTRACT

Meiosis is the process by which haploid gametes are produced from diploid precursor cells. We used stable isotope labeling by amino acids in cell culture (SILAC) to characterize the meiotic proteome in the fission yeast Schizosaccharomyces pombe. We compared relative levels of proteins extracted from cells harvested around meiosis I with those of meiosis II, and proteins from premeiotic S phase with the interval between meiotic divisions, when S phase is absent. Our proteome datasets revealed peptides corresponding to short open reading frames (sORFs) that have been previously identified by ribosome profiling as new translated regions. We verified expression of selected sORFs by Western blotting and analyzed the phenotype of deletion mutants. Our data provide a resource for studying meiosis that may help understand differences between meiosis I and meiosis II and how S phase is suppressed between the two meiotic divisions.


Subject(s)
Meiosis , Open Reading Frames/genetics , Proteomics , Schizosaccharomyces/cytology , Schizosaccharomyces/genetics , Gene Deletion , Isotope Labeling , Meiosis/genetics , Phenotype , Proteome/metabolism , Reproducibility of Results , Ribosomes/metabolism , Schizosaccharomyces pombe Proteins/genetics , Schizosaccharomyces pombe Proteins/metabolism
14.
Trends Genet ; 36(6): 387-389, 2020 06.
Article in English | MEDLINE | ID: mdl-32396831

ABSTRACT

The loop extrusion hypothesis postulated that extrusion of DNA loops through cohesin rings organizes genomes. Recent findings suggest that cohesin itself is a molecular motor that extrudes DNA. This has important implications not only for the organization of interphase chromatin but also for other processes where cohesin plays vital roles.


Subject(s)
Cell Cycle Proteins/metabolism , Cell Nucleus/genetics , Chromatin Assembly and Disassembly , Chromosomal Proteins, Non-Histone/metabolism , DNA Replication , Meiosis , Animals , Cell Cycle Proteins/genetics , Chromosomal Proteins, Non-Histone/genetics , DNA Packaging , Humans , Cohesins
15.
Cell Cycle ; 18(14): 1532-1536, 2019 07.
Article in English | MEDLINE | ID: mdl-31219728

ABSTRACT

The spliceosome is a complex molecular machine assembled from many components, which catalyzes the removal of introns from mRNA precursors. Our previous study revealed that the Nrl1 (NRDE-2 like 1) protein associates with spliceosome proteins and regulates pre-mRNA splicing and homologous recombination-dependent R-loop formation in the fission yeast Schizosaccharomyces pombe. Here, we identify proteins associated with splicing factors Ntr1, Ntr2, Brr2 and Gpl1, a poorly characterized G-patch domain-containing protein required for efficient splicing. This work provides new evidence that Nrl1 and splicing factors physically interact and reveals additional insights into the protein interaction network of the spliceosome. We discuss implications of these findings in the light of recent progress in our understanding of how Nrl1 and splicing factors ensure genome stability.


Subject(s)
RNA Helicases/metabolism , RNA Splicing Factors/metabolism , Schizosaccharomyces pombe Proteins/metabolism , Schizosaccharomyces/metabolism , R-Loop Structures/genetics , RNA Helicases/genetics , RNA Splicing/genetics , RNA Splicing Factors/genetics , RNA Splicing Factors/isolation & purification , Schizosaccharomyces/genetics , Schizosaccharomyces pombe Proteins/genetics , Schizosaccharomyces pombe Proteins/isolation & purification , Spliceosomes/genetics , Spliceosomes/metabolism
16.
Int J Mol Sci ; 20(9)2019 May 01.
Article in English | MEDLINE | ID: mdl-31052469

ABSTRACT

Berberine is a bioactive isoquinoline alkaloid derived from many plants. Although berberine has been shown to inhibit growth and induce apoptosis of several tumor cell lines, its poor absorption and moderate activity hamper its full therapeutic potential. Here, we describe the synthesis of a series of 9-O-substituted berberine derivatives with improved antiproliferative and apoptosis-inducing activities. An analysis of novel berberine derivatives by EPR spectroscopy confirmed their similar photosensitivity and analogous behavior upon UVA irradiation as berberine, supporting their potential to generate ROS. Improved antitumor activity of novel berberine derivatives was revealed by MTT assay, by flow cytometry and by detection of apoptotic DNA fragmentation and caspase-3 activation, respectively. We showed that novel berberine derivatives are potent inhibitors of growth of HeLa and HL-60 tumor cell lines with IC50 values ranging from 0.7 to 16.7 µM for HL-60 cells and 36 to >200 µM for HeLa cells after 48 h treatment. Further cell cycle analysis showed that the observed inhibition of growth of HL-60 cells treated with berberine derivatives was due to arresting these cells in the G2/M and S phases. Most strikingly, we found that berberine derivative 3 (9-(3-bromopropoxy)-10-methoxy-5,6-dihydro-[1,3]dioxolo[4,5-g]isoquino[3,2-a] isoquinolin-7-ylium bromide) possesses 30-fold superior antiproliferative activity with an IC50 value of 0.7 µM and 6-fold higher apoptosis-inducing activity in HL-60 leukemia cells compared to berberine. Therefore, further studies are merited of the antitumor activity in leukemia cells of this berberine derivative.


Subject(s)
Antineoplastic Agents/chemical synthesis , Berberine/analogs & derivatives , Antineoplastic Agents/pharmacology , Apoptosis/drug effects , Cell Cycle Checkpoints/drug effects , Cell Division/drug effects , HeLa Cells , Humans
17.
J Cell Sci ; 131(13)2018 07 06.
Article in English | MEDLINE | ID: mdl-29898918

ABSTRACT

The canonical role of cohesin is to mediate sister chromatid cohesion. In addition, cohesin plays important roles in processes such as DNA repair and regulation of gene expression. Mounting evidence suggests that various post-translational modifications, including phosphorylation, acetylation and sumoylation regulate cohesin functions. Our mass spectrometry analysis of cohesin purified from Schizosaccharomyces pombe cells revealed that the cohesin subunit Psm1 is methylated on two evolutionarily conserved lysine residues, K536 and K1200. We found that mutations that prevent methylation of Psm1 K536 and K1200 render sensitivity to DNA-damaging agents and show positive genetic interactions with mutations in genes encoding the Mus81-Eme1 endonuclease. Yeast two-hybrid and co-immunoprecipitation assays showed that there were interactions between subunits of the cohesin and Mus81-Eme1 complexes. We conclude that cohesin is methylated and that mutations that prevent methylation of Psm1 K536 and K1200 show synthetic phenotypes with mutants defective in the homologous recombination DNA repair pathway.


Subject(s)
Cell Cycle Proteins/metabolism , Chromosomal Proteins, Non-Histone/metabolism , DNA-Binding Proteins/genetics , Endonucleases/genetics , Schizosaccharomyces pombe Proteins/genetics , Schizosaccharomyces pombe Proteins/metabolism , Schizosaccharomyces/metabolism , Amino Acid Motifs , Cell Cycle Proteins/chemistry , Cell Cycle Proteins/genetics , Chromosomal Proteins, Non-Histone/chemistry , Chromosomal Proteins, Non-Histone/genetics , DNA Damage , DNA Repair , DNA-Binding Proteins/metabolism , Endonucleases/metabolism , Methylation , Mutation , Protein Binding , Schizosaccharomyces/chemistry , Schizosaccharomyces/enzymology , Schizosaccharomyces/genetics , Schizosaccharomyces pombe Proteins/chemistry , Cohesins
18.
Nucleic Acids Res ; 44(4): 1703-17, 2016 Feb 29.
Article in English | MEDLINE | ID: mdl-26682798

ABSTRACT

The formation of RNA-DNA hybrids, referred to as R-loops, can promote genome instability and cancer development. Yet the mechanisms by which R-loops compromise genome instability are poorly understood. Here, we establish roles for the evolutionarily conserved Nrl1 protein in pre-mRNA splicing regulation, R-loop suppression and in maintaining genome stability. nrl1Δ mutants exhibit endogenous DNA damage, are sensitive to exogenous DNA damage, and have defects in homologous recombination (HR) repair. Concomitantly, nrl1Δ cells display significant changes in gene expression, similar to those induced by DNA damage in wild-type cells. Further, we find that nrl1Δ cells accumulate high levels of R-loops, which co-localize with HR repair factors and require Rad51 and Rad52 for their formation. Together, our findings support a model in which R-loop accumulation and subsequent DNA damage sequesters HR factors, thereby compromising HR repair at endogenously or exogenously induced DNA damage sites, leading to genome instability.


Subject(s)
Alternative Splicing/genetics , Genomic Instability/genetics , Homologous Recombination/genetics , RNA Precursors/genetics , Schizosaccharomyces pombe Proteins/genetics , DNA/chemistry , DNA/genetics , DNA Repair/genetics , RNA/chemistry , RNA/genetics , Rad51 Recombinase/genetics , Rad52 DNA Repair and Recombination Protein/genetics , Schizosaccharomyces/genetics , Spliceosomes/genetics , Spliceosomes/metabolism
19.
PLoS One ; 10(6): e0128558, 2015.
Article in English | MEDLINE | ID: mdl-26030138

ABSTRACT

The CSB protein, a member of the SWI/SNF ATP dependent chromatin remodeling family of proteins, plays a role in a sub-pathway of nucleotide excision repair (NER) known as transcription coupled repair (TCR). CSB is frequently mutated in Cockayne syndrome group B, a segmental progeroid human autosomal recessive disease characterized by growth failure and degeneration of multiple organs. Though initially classified as a DNA repair protein, recent studies have demonstrated that the loss of CSB results in pleiotropic effects. Identification of novel proteins belonging to the CSB interactome may be useful not only for predicting the molecular basis for diverse pathological symptoms of CS-B patients but also for unraveling the functions of CSB in addition to its authentic role in DNA repair. In this study, we performed tandem affinity purification (TAP) technology coupled with mass spectrometry and co-immunoprecipitation studies to identify and characterize the proteins that potentially interact with CSB-TAP. Our approach revealed 33 proteins that were not previously known to interact with CSB. These newly identified proteins indicate potential roles for CSB in RNA metabolism involving repression and activation of transcription process and in the maintenance of chromatin dynamics and integrity.


Subject(s)
Chromatin/genetics , Cockayne Syndrome/genetics , DNA Helicases/genetics , DNA Repair Enzymes/genetics , RNA/genetics , Cell Line , DNA Repair/genetics , Humans , Immunoprecipitation/methods , Poly-ADP-Ribose Binding Proteins , Transcription, Genetic/genetics
20.
PLoS Genet ; 11(5): e1005225, 2015 May.
Article in English | MEDLINE | ID: mdl-25993311

ABSTRACT

Proper meiotic chromosome segregation, essential for sexual reproduction, requires timely formation and removal of sister chromatid cohesion and crossing-over between homologs. Early in meiosis cohesins hold sisters together and also promote formation of DNA double-strand breaks, obligate precursors to crossovers. Later, cohesin cleavage allows chromosome segregation. We show that in fission yeast redundant casein kinase 1 homologs, Hhp1 and Hhp2, previously shown to regulate segregation via phosphorylation of the Rec8 cohesin subunit, are also required for high-level meiotic DNA breakage and recombination. Unexpectedly, these kinases also mediate phosphorylation of a different meiosis-specific cohesin subunit Rec11. This phosphorylation in turn leads to loading of linear element proteins Rec10 and Rec27, related to synaptonemal complex proteins of other species, and thereby promotes DNA breakage and recombination. Our results provide novel insights into the regulation of chromosomal features required for crossing-over and successful reproduction. The mammalian functional homolog of Rec11 (STAG3) is also phosphorylated during meiosis and appears to be required for fertility, indicating wide conservation of the meiotic events reported here.


Subject(s)
Casein Kinase I/metabolism , Chromosome Segregation , Protein Kinases/metabolism , Schizosaccharomyces pombe Proteins/metabolism , Schizosaccharomyces/genetics , Casein Kinase I/genetics , Cell Cycle Proteins/genetics , Cell Cycle Proteins/metabolism , Chromosomal Proteins, Non-Histone/genetics , Chromosomal Proteins, Non-Histone/metabolism , DNA Breaks, Double-Stranded , DNA, Fungal/genetics , Homologous Recombination , Meiosis , Mutation , Phosphorylation , Promoter Regions, Genetic , Protein Kinases/genetics , Schizosaccharomyces pombe Proteins/genetics , Synaptonemal Complex/metabolism , Cohesins
SELECTION OF CITATIONS
SEARCH DETAIL
...