Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Mol Ecol ; 12(5): 1125-35, 2003 May.
Article in English | MEDLINE | ID: mdl-12694277

ABSTRACT

Plants often respond to attack by insect herbivores and necrotrophic pathogens with induction of jasmonate-dependent resistance traits, but respond to attack by biotrophic pathogens with induction of salicylate-dependent resistance traits. To assess the degree to which the jasmonate- and salicylate-dependent pathways interact, we compared pathogenesis-related protein activity and bacterial performance in four mutant Arabidopsis thaliana lines relative to their wild-type backgrounds. We found that two salicylate-dependent pathway mutants (cep1, nim1-1) exhibited strong effects on the growth of the generalist biotrophic pathogen, Pseudomonas syringae pv. tomato, whereas two jasmonate-dependent pathway mutants (fad3-2fad7-2fad8, jar1-1) did not. Leaf peroxidase and exochitinase activity were negatively correlated with bacterial growth, whereas leaf polyphenol oxidase activity and trypsin inhibitor concentration were not. Interestingly, leaf total glucosinolate concentration was positively correlated with bacterial growth. In the same experiment, we also found that application of jasmonic acid generally increased leaf peroxidase activity and trypsin inhibitor concentration in the mutant lines. However, the cep1 mutant, shown previously to overexpress salicylic acid, exhibited no detectable biological or chemical responses to jasmonic acid, suggesting that high levels of salicylic acid may have inhibited a plant response. In a second experiment, we compared the effect of jasmonic acid and/or salicylic acid on two ecotypes of A. thaliana. Application of salicylic acid to the Wassilewskija ecotype decreased bacterial growth. However, this effect was not observed when both salicylic acid and jasmonic acid were applied, suggesting that jasmonic acid negated the beneficial effect of salicylic acid. Collectively, our results confirm that the salicylate-dependent pathway is more important than the jasmonate-dependent pathway in determining growth of P. syringae pv. tomato in A. thaliana, and suggest important negative interactions between these two major defensive pathways in the Wassilewskija ecotype. In contrast, the Columbia ecotype exhibited little evidence of negative interactions between the two pathways, suggesting intraspecific variability in how these pathways interact in A. thaliana.


Subject(s)
Arabidopsis/enzymology , Arabidopsis/microbiology , Cyclopentanes/metabolism , Immunity, Innate/physiology , Pseudomonas/pathogenicity , Salicylates/metabolism , Arabidopsis/physiology , Colony Count, Microbial , Genetic Variation , Immunity, Innate/genetics , Mutation/physiology , Oxylipins
2.
J Chem Ecol ; 27(3): 593-610, 2001 Mar.
Article in English | MEDLINE | ID: mdl-11441448

ABSTRACT

We investigated the effects of plant density on plant size, leaf total soluble protein content, and constitutive and wound-induced levels of proteinaceous trypsin inhibitors in pot-grown Brassica napus seedlings in two greenhouse studies. We manipulated plant density by varying the number of intraspecific neighbors surrounding a target plant in the center of each pot. In general, constitutive and induced levels of trypsin inhibitors were significantly reduced by competition in a density-dependent manner, to the extent that induction was greatly reduced or abolished in target plants surrounded by six neighbors. To investigate whether the effects of plant density on inhibitor production were mediated by nutrient availability, we manipulated the concentration of a complete fertilizer applied to target plants surrounded by six neighbors in two greenhouse studies. In general, constitutive and wound-induced levels of inhibitors in plants surrounded by six neighbors were increased by nutrient addition in a dose-dependent manner, such that wound-induction was completely restored in competing plants under conditions of high nutrient availability. Leaf total soluble protein content, measured only in the second trial of each experiment, was not affected by any of the treatments. The effects of plant density, nutrient addition, and wounding on inhibitor levels in all experiments were independent of their effects on above-ground plant size at the time of wounding. Overall, our results suggest that decreasing nutrient availability mediates the density-dependent reductions in inhibitor levels in B. napus seedings.


Subject(s)
Brassica napus/metabolism , Fertilizers , Trypsin Inhibitors/biosynthesis , Brassica napus/growth & development , Nitrogen/administration & dosage , Phosphorus/administration & dosage , Plant Proteins/analysis , Potassium/analysis , Random Allocation , Trypsin Inhibitors/analysis
3.
Am J Bot ; 85(11): 1586-91, 1998 Nov.
Article in English | MEDLINE | ID: mdl-21680317

ABSTRACT

The induction of defense-related peroxidase (POD) activity in plants occurs in response to many biotic and abiotic stimuli. This controlled greenhouse study was an attempt to provide insight into the nature of the induction of soluble POD activity by noninjurious wind-induced mechanical perturbation (MP). In a time course study, exposure of common bean (Phaseolus vulgaris) seedlings to daily periods of fan-produced wind induced a significant and sustained increase in soluble POD activity in primary leaves of 7-9-d-old seedlings. In a wind-gradient study, wind-induced MP led to increases in soluble POD activity in leaves that were proportionally related to the wind speed experienced by individual seedlings. Wind-induced MP enhanced soluble POD activity to a degree similar to treatment with 5 mmol/L HgCl(2), a potent oxidizing elicitor of POD activity in plants. However, no further increases in POD activity were induced by HgCl(2) on plants that were preconditioned with wind-induced MP. Finally, short periods of brushing-induced MP enhanced soluble POD activity to the same degree as longer periods of wind-induced MS, suggesting a greater sensitivity to thigmic stimuli than to seismic stimuli in leaves of bean seedlings. This study illustrates the potential importance of wind and other mechanical stimuli as inducers of POD activity and interacting factors in the elicitation of POD activity by other environmental stimuli.

4.
Trends Ecol Evol ; 12(7): 276-7, 1997 Jul.
Article in English | MEDLINE | ID: mdl-21238072
SELECTION OF CITATIONS
SEARCH DETAIL
...