Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
2.
Front Immunol ; 7: 73, 2016.
Article in English | MEDLINE | ID: mdl-26973650

ABSTRACT

Distinctive molecular characteristics of functionally diverse lymphocyte populations may represent novel pharmacological targets for immunotherapy. The intrinsic apoptosis pathway is differently regulated among conventional and regulatory T cells (Tregs). Targeted pharmacological modulation of this pathway with a small molecule Bcl-2/Bcl-xL inhibitor (ABT-737) caused a selective depletion of effector T cells and a relative enrichment of Tregs in vivo. Treatment with ABT-737 resulted in a tolerogenic milieu, which was exploited to alleviate graft-versus-host disease, to prevent allograft rejection in a stringent fully MHC-mismatched skin transplantation model and to induce immunological tolerance in combination with bone marrow transplantation. This concept has the potential to find various applications for immunotherapy, since it allows pharmacologic exploitation of the immunomodulatory properties of Tregs without the need for cell manipulation ex vivo.

3.
Transpl Int ; 26(5): 535-44, 2013 May.
Article in English | MEDLINE | ID: mdl-23405964

ABSTRACT

Blocking the CD40-CD154 pathway prevents allograft rejection and induces donor-specific tolerance in various experimental models. However, the translation to clinical studies has been hampered by unexpected thromboembolic complications of CD154-blocking antibodies. Thus, blocking CD40 instead is now considered as an alternative strategy. Here, we evaluated the role of donor CD40 in allospecific T-cell responses in vitro and in an in vivo model for renal transplantation. Fully MHC-mismatched allografts from CD40-deficient donors displayed better renal function than wild type. These functional data correlated with a lower level of apoptosis in renal tubular epithelial cells and higher expression of PD-L1, which is most probably because of a reduced Th17 response in recipients of a CD40-deficient donor. This hypothesis was supported in vitro, where donor CD40 expression was important for the induction of direct allospecific T-cell responses. Especially the induction of Th17 cells was critically dependent on donor CD40. IL-17A in conjunction with interferon-γ in turn rendered renal tubular epithelial cells to a more costimulatory state by upregulating CD40 and downregulating PD-L1 expression. In conclusion, CD40 blockade not only reduces the allospecific T-cell responses, but might also lead to protection of tubular epithelium from apoptosis and thereby preserve kidney allograft function.


Subject(s)
CD40 Antigens/deficiency , Kidney Transplantation , Tissue Donors , Animals , Apoptosis/immunology , CD40 Antigens/genetics , Dendritic Cells/immunology , Epithelium/immunology , Epithelium/pathology , Kidney/immunology , Kidney/pathology , Kidney/physiology , Mice , Mice, Inbred C57BL , Mice, Inbred CBA , Mice, Knockout , T-Lymphocytes, Cytotoxic/immunology , Th17 Cells/immunology , Transplantation, Homologous
SELECTION OF CITATIONS
SEARCH DETAIL
...