Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Neuroscience ; 248: 252-60, 2013 Sep 17.
Article in English | MEDLINE | ID: mdl-23769892

ABSTRACT

Maternal deprivation has been associated with physiological and developmental changes that may be related to an increased risk for childhood and adult neuropsychiatric diseases. A growing number of studies demonstrated the importance of childhood experiences in the development of psychosis and schizophrenia in adulthood. Therefore, the present study investigated different behavior responses in rats following maternal deprivation and/or ketamine treatment in adulthood. Male rats were subjected to maternal deprivation for 180 min from postnatal day-01 to postnatal day-10. We evaluated locomotor activity, avoidance task and social interaction of adult male rats deprived or not deprived that were administered with saline or acute subanesthetic doses of ketamine (5, 15 and 25 mg/kg, i.p.). Our results show that only ketamine (25 mg/kg, i.p.) treatment in the adult rats lead to hyperlocomotion but not ketamine (5 and 15 mg/kg) and maternal deprivation alone. However, maternally deprived rats treated with ketamine (5 mg/kg) induced hyperlocomotion. Additionally, ketamine (25 mg/kg) and maternal deprivation alone induced cognitive deficit in the avoidance task. Rats deprived of and treated with ketamine (5, 15 and 25 mg/kg) also lead to memory deficit. Moreover, ketamine (25 mg/kg) and maternal deprivation alone increased latency to start social behavior. However, ketamine (5 mg/kg) and maternal deprivation lead to an increase of latency to start social behavior. Biochemistry data showed that all doses of ketamine and ketamine plus maternal deprivation increased the acetylcholinesterase (AChE) activity in the prefrontal cortex, hippocampus and striatum. The major doses of ketamine associated with maternal deprivation induced a major increase of AChE activity. Together, our results suggest that animals subjected to maternal deprivation had an increased risk for schizophrenia-like behavior and cholinergic alteration.


Subject(s)
Acetylcholinesterase/metabolism , Aging/psychology , Behavior, Animal , Maternal Deprivation , Schizophrenia/metabolism , Schizophrenic Psychology , Animals , Avoidance Learning , Disease Models, Animal , Ketamine/toxicity , Locomotion , Male , Memory , Motor Activity , Rats , Schizophrenia/chemically induced , Social Behavior
2.
Eur J Clin Microbiol Infect Dis ; 31(8): 2005-9, 2012 Aug.
Article in English | MEDLINE | ID: mdl-22302624

ABSTRACT

Pneumococcal meningitis is a severe infectious illness of the central nervous system (CNS), with high rates of lethality and morbidity, being that the microorganism and the host's inflammatory response are responsible for cerebral complications. Moreover, the blood­brain barrier (BBB) itself secretes cytokines and, because of the bipolar nature of the BBB, these substances can be secreted into either the CNS compartment or in the blood, so patients with acute bacterial meningitis frequently develop sepsis. Therefore, the aim of this study was to evaluate the cytokine/chemokine levels in different vessels and the BBB integrity after pneumococcal meningitis induction. Wistar rats were infected with Streptococcus pneumoniae, and the BBB integrity was investigated using Evan's blue dye. Also, blood from the carotid artery and jugular vein was collected in order to perform tumour necrosis factor-alpha (TNF-α), interleukin-1 beta (IL-1ß), interleukin-6 (IL-60 and cytokine-induced neutrophil chemoattractant-1 (CINC-1) analyses by enzyme-linked immunosorbent assay (ELISA). CINC-1 levels were increased at 6 h in the arterial plasma and at 3 and 6 h in the jugular plasma. We observed BBB breakdown between 12 and 24 h in the hippocampus and at 12 and 18 h in the cortex after pneumococcal meningitis induction. The increase of CINC-1 occurred prior to the BBB breakdown. CINC-1 is a neutrophil chemoattractant and it may be related to early events in the pneumococcal meningitis pathophysiology.


Subject(s)
Blood-Brain Barrier/pathology , Chemokine CXCL1/blood , Meningitis, Pneumococcal/pathology , Animals , Blood Chemical Analysis , Enzyme-Linked Immunosorbent Assay , Male , Rats , Rats, Wistar , Time Factors
SELECTION OF CITATIONS
SEARCH DETAIL
...