Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Chemosphere ; 214: 866-876, 2019 Jan.
Article in English | MEDLINE | ID: mdl-30317167

ABSTRACT

Despite typically not being taken into account (usually in favour of the 'global distillation' process), the input of persistent organic pollutants (POPs) through biological activities can be indeed relevant at the local scale in terrestrial polar environments when seabird colonies are considered. Seabirds can bioaccumulate and biomagnify POPs, gather in large numbers and excrete on land during their reproductive season, thus making them locally as relevant secondary sources of POPs. The first part of this study indicated that these colonies act as so for several essential and non-essential trace elements, and this second part tests the same hypothesis concerning POPs using the very same samples. Lichens (n = 55), mosses (n = 58) and soil (n = 37) were collected from 13 locations in the South Shetlands Archipelago during the austral summers of 2013-14 and 2014-15. They were divided in colony (within the colony itself for soil and within and surrounding the colony for vegetation) and control (at least 150 m away from any colony interference) and analysed for POPs such as organochlorine pesticides, polychlorinated biphenyls (PCBs) and polybrominated diphenyl ethers and stable isotopes (C and N). Results showed that colonies act clearly as a secondary source for PCBs and likely for hexachlorobenzene. As in the first part, probable local sources other than the colonies themselves are hypothesised because of high concentrations found in control sites. Again, soil seemed the most adequate matrix for the intended purposes especially because of some particularities in the absorption of animal-derived organic matter by vegetation, pointed out by stable isotope analyses.


Subject(s)
Ecosystem , Environmental Monitoring/methods , Environmental Pollutants/chemistry , Animals , Antarctic Regions , Birds , Environmental Pollutants/analysis
2.
Chemosphere ; 204: 535-547, 2018 Aug.
Article in English | MEDLINE | ID: mdl-29684873

ABSTRACT

Global distillation is classically pointed as the biggest responsible for contaminant inputs in Polar ecosystems. Mercury (Hg) and other trace elements (TEs) also present natural sources, whereas the biologically mediated input is typically ignored. However, bioaccumulation and biomagnification combined with the fact that seabirds gather in large numbers into large colonies and excrete on land might represent an important local TEs input. A previous work suggested these colonies as sources of not only nutrients, but also organic contaminants. To evaluate a similar hypothesis for TEs, samples of lichen (n = 55), mosses (n = 58) and soil (n = 37) were collected in 13 locations within the South Shetlands Archipelago during the austral summers of 2013-14 and 2014-15. They were divided in: "colony" (within the colony itself for soil and bordering it for vegetation) and "control" (at least 50 m away from colony interference), analysed for TEs (As, Cd, Co, Cr, Cu, Fe, Hg, Mn, Ni, Pb, Se, V, and Zn) and stable isotopes (C and N). In most cases, soil seems the best matrix to assess colonies as TEs sources, as it presented more differences between control/colony sites than vegetation. Colonies are clearly local sources of organic matter, Cd, Hg and likely of As, Se and Zn. Conversely, Co, Cr, Ni and Pb come presumably from other sources, natural or anthropogenic. In general, isotopes were more useful for interpreting vegetation data due to fractionation of absorbed animal-derived organic matter. Other local Hg sources could be inferred from high levels in control sites, location and wind patterns.


Subject(s)
Birds/physiology , Ecosystem , Metals, Heavy/analysis , Soil Pollutants/analysis , Soil/chemistry , Trace Elements/analysis , Animals , Antarctic Regions , Environmental Monitoring
SELECTION OF CITATIONS
SEARCH DETAIL
...